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Abstract

"Numerical Methods of Parameter Identification for Problems

Arising in Elasticity", by James Michael Crowley, Captain, USAF,

Ph.D., Brown University, June, 1982, 130 pp.

Numerical methods for approximate identification or estima-

tion of constant parameters in certain fourth-order partial dif-

ferential equations (distributed parameter systems) from data are

proposed based upon a reformulation of the problem as an abstract

equation in a Hilbert space. Projections onto suitable subspaces

of splines are used to obtain a semi-discrete approximation which

is used to estimate the unknown parameters. Convergence of the

approximations is proved using linear semigroup theory and the

Trotter-Kato theorem. The proposed methods are applied to estima-

tion of parameters in both the Euler-Bernoulli equation with struc-

tural and viscous damping and the Timoshenko equation for trans-

verse vibration of a beam. Numerical results are presented.
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INTRODUCTION

In many problems of practical importance one would like to

identify unknown parameters in mathematical models given certain

observations of the underlying physical phenomenon being modeled.

A general framework for approximating or estimating unknown para-

meters in partial differential equations, using modal (eigenfunc-

tion) approximations, was presented in [11]. The general theo-

retical framework developed in [11] was subsequently applied to

spline-based techniques in [ 7] to two classes of second order

initial-boundary value problems.

This thesis is devoted to developing numerical methods for

estimating unknown constant parameters in certain fourth order

constant coefficient partial differential equations. The approxi-

mation techniques follow the approach in f 7] and convergence is

proved using the theoretical convergence framework developed in

[i] employing linear semigroup theory. The necessary theoreti-

cal framework is summarized in Chapter 1.

We treat identification problems for two specific equations

in one dimension which model the transverse vibration of an elas-

tic or viscoelastic beam, and develop numerical methods for esti-

mating unknown parameters.

We examine estimation techniques for the Euler-Bernoulli

equation in Chapter 2 and for the Timoshenko equation in Chapter

3. In both cases we develop methods for numerically estimating

unknown parameters and prove convergence of the methods. Numeri-

cal results are provided to illustrate the theoretical convergence

results.
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The Euler-Bernoulli equation which we examine includes both

structural (internal) and viscous damping, and various boundary

conditions are used. We introduce two methods for estimating

parameters, one based on quintic splines (Section 2) and one based

on cubic spline approximations (Section 3). For the Timoshenko

equation (Chapter 3) we examine one technique for estimation of

parameters based upon cubic spline approximations.

In Chapter 4 we discuss the implementation of the approxima-

tion techniques into a computer code. Since all of the computer

codes used here for the fourth order problems and in [ 7] for

certain second order problems have the same general structure, to

discussion of the implementation is made sufficiently general to

describe all of the spline-based methods which we have developed.

The notation employed throughout this thesis is rather stan-

dard. For norms of elements in Banach spaces we use 1I, whereas

is used for operator norms. A subscripted norm I. m de-

notes certain norms equivalent to the usual norms on the Sobolev

spaces Hm  over (0,1], and specifically 1.10 denotes the H0

(L 2 ) norm. Similarly, inner products on certain subspaces of

the Sobolev spaces Hm will be denoted by <.,'>m" These will be

defined in Section 2 of Chapter 1. As we shall be dealing with

state spaces Z which are products of function spaces, the sym-

bol ' with no subscript (and similarly <.,.>) will be reserved

to denote the norm (or inner product) on the state space Z.
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CHAPTER 1. FOUNDATIONS

Section 1. The Identification Problem and Its Approximation

We begin by defining the identification or estimation problem

for a process governed by a partial differential equation and pro-

ceed to its abstract formulation. A general framework for ap-

proximating solutions is introduced along with tools necessary to

establish convergence. The techniques for approximating solutions

to the identification problem follow those introduced in [111,

where modal (eigenfunction) state approximations were applied to

a class of hyperbolic and parabolic equations, and also used in

[7 ], where spline-based state approximations were applied to the

same class of problems.

This section outlines the basic approach and theory which will

be applied in later chapters to two specific equations, namely

the Euler-Bernoulli and Timoshenko equations for the transverse

vibration of a beam, and to specific spline-based approximations

for the identification problem.

We first define the identification problem for an initial-

boundary value problem. Suppose we have a physical process

modeled by an initial-boundary value problem with unknown para-

meters q = (ql,...,qp) E RP; the parameters qi may be unknown

constant coefficients in the partial differential equation or

parameters appearing in functions in the initial conditions or

non-homogeneous term. Suppose also that we are given a set of

output measurements from the physical process which is modeled by

the initial-boundary value problem. In a sense which will be

made more precise in what follows, the identification (or estima-
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tion) problem consists of finJing the vector of parameters q E RP

such that the solution of the initial-boundary value problem

"best fits" the output measurements of the physical process.

he will be interested in two particular initial-boundary value

problems, namely the Euler-Bernoulli and Timoshenko equations for

the transverse vibration of a uniform beam. The Euler-Bernoulli

equation, including structural and viscous damping, has the form

(1.1) Ytt -ql D 4y - q2D yt - q3y + f(t,x;q), t > 0, x E [0,1]

y(Ox) = yo(x;q)

Yt(O,x) = Y(x;q),

with appropriate homogeneous boundary conditions at x = 0 and

x = 1, where Di E aj/ax j , y(t,x;q) is the transverse displace-

ment, and f(t,x;q) is the applied load. Here, q,, q2, and q3

are unknown constant coefficients, and q4 ,... ,qp are parameters

appearing in the nonhomogeneous (load) term and initial conditions.

The Timoshenko equations can be put in the form

(1.2) tt ql D 2y - ql DP + f(t,x;q)

tt = q3 D
2 0 + q2 (Dy - *) E [0,1]

y(O,x) = y0 (x;q)

yt(0,x) = yl(x;q)

*(O,x) = o (x;q)

Pt(o,x) = Y(x;q)

where again we associate appropriate homogeneous boundary condi-

tions with (1.2) at x = 0 and x = 1. Here y(t,x;q) is trans-

verse displacent and '(t,x;q) is the angle of rotation of a



cross-section of the beam.

More will be said about these equations in the sequel. The

above is sufficient at present to set the framework for the

identification problem.

We shall be interested in the identilication problem associa-

ted with (1.1) or (1.2). Given a set of observations n = {i }r

• • •i=l'

where ri = (S(tiTxl)'''''Y(ti'xi)) and Y(ti,xj) is the ob-

served displacement at ti, xj, of a process which we assume to

be modeled by (1.1) or (1.2), find the vector of parameters

= (ql,...,qp) which minimizes J(q;y,n), where J is some

functional measuring the fit of (1.1) or (1.2) to the data hi"

Specifically, we shall use a pointwise fit-to-data criterion of

the form

r
(1.3) J(q,y,6) = n i - i

n=l

where i = (y(tti'x)) and (t,x) y(t,x)

(respectively, (t,x) > (y(t,x),i(t,x)) is the solution of

(1.1) (respectively, of (1.2)).

To ensure that the initial-boundary value problems are well-

posed, we shall assume hereafter

1) Q is a compact set in RP , and

L >0 sc htL
(HQ) 2) there exists q1 > 0 such that q q1  for all

q E Q.

For the Timoshenko equations, we also require, along with the

above
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2') there exists qL>0 such that q > qL for all q E Q.2')3 3hr xssq - 3

Remark. Note that we have formulated the initial-boundary

value problem for homogeneous boundary conditions. If nonhomo-

geneous time dependent boundary conditions occur, of the form

(DJy) lx= 0 = h(t,q) they will be transformed to homogeneous bound-

ary conditions by a transformation of the form v(t,x) = y(t,x) -

g(x)h(t,q), (see [29], where a general method for transforming

(1.1) with time-dependent boundary conditions to (1.1) with homo-

geneous boundary conditions, in the case q= 0, q3 = 0, is dis-

cussed). When such a transformation is performed and the output

measurements in the fit-to-data criterion correspond, as above,

to y, it is appropriate to modify J in (1.3) to

r 2
(1.3') J'(q,v,n) = n - n-I 2

i=l 1 1 '

where

(v(tixl) + g(xl)h(ti,q),...,v(ti,xZ) + g(xk)h(ti;q))T

Definition 1.1. The identification problem (ID) for (1.1) (or

(1.2)) is defined as the following: given (1.1) with unknown

parameters q = (ql,...,qp) E RP  and a family of solutions

(t,x) ,- y(t,x;q) ((y(t,x;q),p(t,x;q))T for (1.2)), and a set

of output measurements {A( i)}ir find q E Q, where Q is some

parameter set in RP  satisfying (HQ), such that

y(.,.;q),n) < J(q,y(.,.;q),) for all q E Q,

where J is the cost functional (1.3).

Having formulated the identification problem for two model

initial-boundary problems, we proceed to an abstract formulation
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of the problem. First we write the initial-boundary value problem

(1.1) or (1.2) as an abstract equation on an appropriate Hilbert

space Z, in the form

(1.4) z(t) =-Q((q)z(t) + F(q,t) for t > 0

z(O) = z0

where z(t) = (z1(t),...,Zn(t)) E Z for every t E [0,T], and

zl(t) corresponds to y(t,.) in (1.1) or (1.2).

Specific formulations of (1.1) and (1.2) as an abstract equa-

tion will be examined in Chapters 2 and 3. In each case, the ab-

stract equation will be formulated in such a way that -;V(q) gen-

erates a C0  semigroup T(t;q) on Z; i.e., t T(t,q)z0

is the solution to i(t) =.sQ/(q)z(t), z(0) = z0 .

The notion of dissipativeness will play a central role in

proving that _&/(q) is generator of a C0  semigroup in the speci-

fic examples to be considered. A densely defined operator _C' is

called dissipative if <-zz> < 0 for all z E Dom(QV), and maxi-

mal dissipative if its only dissipative extension is itself.

While there are many simple conditions which guarantee that a

dissipative operator generates a C0  semigroup, we shall use one

primarily: a maximal dissipative operator _V generates a C0

semigroup {T(t)1 of contraction on Z; i.e., IT1h _ 1 (cf: [25,

p. 881).

We will be interested in mild solutions of (1.4): t a z(t;q)

is called a mild solution on [0,T] if it satisfies

(1.5) z(t;q) = T(t;q)z 0 + fT(t-s;q)F(q,s)ds
0

for ever), t E [0,T]. We will also place the following conditions
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on F which guarantee uniqueness and existence of mild solutions

z(-,q) E C(0,T;Z) to (1.4) (see [11, p. 13]):

1) The map t > F(q,t) is measurable,

(HF) 2) the map q -- F(q,t) is continuous, and

3) there exists k(t) E L2 (0,T) such that

[F(q,t)j < k(t).

We note in passing that when strong (classical) solutions to

(1.4) exist they will be mild solutions. In fact, if z0 E

Dom(V(q)) and t --- F(q,t) is strongly continuously differen-

tiable in (0,T) with derivative continuous in [0,T], then,

I , p. 2031

i) z(t) is absolutely continuous in (0,T), where t > z(t)

satisfies (1.4)

ii) z(t) E Dom(& for t > 0

iii) Iz(t) - z0f - 0 as t - 0

iv) z(t) satisfies (1.5); i.e., t i z(t) is a mild solution.

Also, the relation between weak solutions of (1.4) and mild

solutions of (1.4) is given by the following theorem [ 3, p. 204].

If we relax the assumptions above and only require that F(q,.) E

L 2(0,T;z), then there exists a unique weak solution t :o z(t;q)

of (1.4) for 0 < t < T, where

<z(t), > is absolutely continuous for every C E Dom(Q?*),

and
ddi <z(t),C> o <z(t),QM> + <F(q,t),t> , 0 < t < T.

Furthermore, z(t) satisfies (1.5); i.e., t - z(t) is also a

mild solution.

- - ____~r.. - 4
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To define point evaluations, we note that Z will always be

taken as a function space of Rn-valued functions defined on

[0,1]. Thus for every q E Q, t E [0,T], we may associate the

function u(.,x;-): [0,1] - Rn satisfying u(t,.;q) = z(t;q).

Then, with u(t,.;q) = (ul(t,*;q),...,un(t,.;q)), we define the

map w 0 z(t;q) E u1(t,.;q). In subsequent applications, we will

always take Z = Z x ... X Zn where ZI consists of functions
nr

sufficiently smooth (in fact, subspaces of the Sobolev spaces Hm

where m > 1) that point evaluations of u1  will make sense.

Now, as we have set up the abstract equation (1.4) so that

zl(t;q) corresponds to y(t,-;q), we may define the cost func-

tional J(q,z(.,q), ) by

(1.6) J(q,z(";q),l) = J(q, 0z(',q), ,

where J is defined in (1.3).

This leads us to define in place of (ID), the abstract

identification problem.

Definition 1.2. The abstract identification problem (IDA) con-

sists of the following: find q E Q a RP  such that

J~q, z(.,q),n) < J(q,z(.,q),n^) for all q E Q,

subject to z(';q) satisfying (1.5).

Remark. This is, of course, a reformulation of the original

identification problem in terms of the abstract equation, employ-

ing mild solutions. The two coincide where classical solutions

of (1.1) or (1.2) exist. It is possible (see [11, pp. 7-8]) to

formulate the cost functional J in a more general way so as to

permit identification when data n consists of measurements of
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quantities other than transverse displacements. Our goal here is

to demonstrate how a numerical approximation may be constructed,

based on the form of (1.4) and the choice of Z, and hence we

have restricted our attention to the above problem.

Since we cannot solve (IDA) directly in general, we describe

a general procedure for approximating solutions to (IDA) following

the approach taken in [ 7 ] and (111. We take a sequence of finite

dimensional subspaces ZN c Z and define PN Z - ZN  to be the

orthogonal projection satisfying

(1.7) IPNz - zi < 1- z for all E zN, or equivalently,

(1.8) <PNz - z, > = 0 for all E E ZN.

The subspaces ZN will be chosen so that ZN z in the sense

that PN - I strongly on Z. We then replace the abstract equa-

tion (1.4) on Z by a sequence of approximating equations on ZN:

(1.9) N (t) =-CVN(q)zN(t) + FN(q,t) for t > 0
N N

zN(0) = zo(q).

The approximations we use are

NN N
_Q0, (q) = pT (q)pN

FN(q,t) = P F(q,t)

N =PN
z= z0 (q).

Note that this choice of-" N(q) requires that ZN a Dom(W(q)).

This requirement not only imposes limitations on the smoothness of

the elements in ZN but also dictates that the boundary condi-

tions, which appear in Dome(q)), be satisfied by every zN(t) EZ

tion, whch ppea in t)
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Remark. The norms on the spaces Z used in subsequent ap-

plications of this theory may be parameter dependent, in which

case the projections PN(q) may depend on the parameters. Al-

though we do not emphasize this parameter dependence until we

encounter specific cases, this should be kept in mind.

Assuming that _g'(q) is the generator of a C0  semigroup,
N

_W(q) is closed, and by the closed graph theorem,WN (q) is a

bounded operator (see [ 3, p. 80]. _Q closed and B bounded im-

plies 'B is bounded, hence p%7(q)pN is a bounded operator).

Thus WNq) generates a semigroup {TN(t;q)} given by (q)t

Moreover, t - zN (t;q) satisfies (1.9) on [0,T] if and only

if it satisfies

It
(1.10) zN(t;q) = TN (t;q)P Nz0 (q) + TN (t-s;q)PNF(q,s)ds.

fo

Then standard Picard iteration arguments imply that solutions
N
z (.;q) of (1.10) exist.

Moreover, when _.(q) is maximal dissipative (and hence gen-

erates a C0  semigroup of contractions), then _/ N(q) will also

be maximal dissipative, and so [[TN(t;q)[[ < 1. This follows from

the following:

<&N(q)z,z> = <pNSV(q) pNz,z>

= <M (q) PN z,pNz >

<0

and

_____________ 4 -- f-t ~ fli I Iiii .~.
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<4wNq))*z,z> = <(PN Wq) P)*z z >

= NN

= <( (q))*pNz,pNz>

< 0,

where we have employed the self-adjointness of the projection

operator pN and the characterization that a dissipative opera-

tor _Y is maximal dissipative if and only if z,z> < 0,

<.STz,z> < 0 and _Qe is closed [25, p. 85].

We can then formulate an approximate identification problem.

Definition 1.3. The approximate identification problem (IDN)

consists of the following: find N Q c RP  such that

(N,z N (.;-NN) < J(q,zN(.;q),l) for all q E Q

subject to z N(.;q) satisfying (1.10) on [0,T].

One of the goals will be to prove convergence of the solutions

-N of the approximate probler (IDN) to a solution q of the

identification problem (IDA). In [11, pp. 15-17], it was proved
N N

that the map q i-- z (t;q) is continuous for z (.;q) satis-

fying (1.10). Since J consists of point evaluations on the

first component of zN(.;q), it is easily argued that the map

V; - J(.,v,') is continuous on C([O,T];z) (recall again that

we will take Z = Z ... X Zn such that Z1  is a subset of H1

or H2). Thus we find that the map qi-- J(q,zN(.;q), ) is

continuous, and so for each N there exists a solution qN to

the approximate identification problem (IDN). By the compactness

of Q, there exists a convergent subsequence (again denoted by qN)

such that qS converges to some q in Q.
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We show that this q is a solution to the identification

problem (IDA). This will be accomplished if we can show

N. N N )

(1.11) lim JqN q* = 0 implies limlzY(t;q N)-z (t;q*) 0

N-N -NN-w
for every t E [0,T]. To see this, observe that J(qN,zN (;qN),n)

< J(q,zN (;q),n) for every q E Q, since -N is a solution of

(IDN). Taking the limit as N , and applying (1.11), we ob-

tain

J q z(';q),n) < J(q,z(';q),n)

for every q E Q. Thus q will be a solution of the identifica-

tion problem (IDA) if (1.11) can be shown to hold. Since t

z(t;q) satisfies

It

(1.4) z(t;q) = T(t;q)z0 (q) + f T(t-s;q)F(q,s)ds, t E [0,T],

N0

and t zN (t;q) satisfies

(1.10) zN (t;q) = TN(t;q)pNz0 () + TN(t-s;q)pNF(q,s)ds,

t E (0,T],

an application of the Lebesgue bounded convergence theorem (see

[11, p. 20]) yields a convenient criterion for showing when (1.11)

holds.

Proposition 1.4. Let t -- z(t;q) and t -o zN(t;q) be

solutions of (1.4) and (1.10) respectively, and assume (HF) holds.

Then

limlqN-q*[ = 0 implies lim zN(t;qN)-z(t;q*)l = 0

for every t E (0,T] if
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i) IT N(t;qN )1 < Meo t with M,w independent of N, q.

ii) pN - I strongly in Z.

iii) TN (t;q) - T(t;q*) strongly in Z and uniformly in

t E [0,T] when {q N is any convergent sequence with
qN - q,.

This proposition, proved in [11, p. 20] for the more general case

when F can be mildly nonlinear, is the fundamental tool in prov-

ing convergence of solutions of the approximate identification

problem to solutions of the abstract identification problem.

Verification of (i) has already been treated in the case where

_4(q) is the generator of a C0  semigroup of contractions. In

that case, we have already shown that IT N(t;q)lI < 1.

Part (ii) of Proposition 1.4 will be verified for the specific

cases where 7
N  is the linear span of certain cubic or quintic

splines satisfying prescribed boundary conditions. This will be

done in Section 3.

Finally, part (iii) of Proposition 1.1 can be established using

the Trotter-Kato theorem, which can be viewed as a functional

analytic version of the Lax Equivalence Theorem (stability plus

consistency implies convergence). The version we use is due to

Kurtz (281:

Proposition 1.5. [28]. Let (2,I.l) and CN,I. N), N = 1,

NN2,..., be Banach spaces and let Nr: c*N be bounded linear

Noperators. Assume further that 5_(t) and -5 (t) are linear

CO - semigroups on _ and -N with infinitesimal generators

_Q? and _VN respectively. If
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i) lim 17 jN i = 1z' for all z E M,

ii) there exist constants MA, independent of N such that

1-N (t)IIN -< for t > 0,

iii) there exists a set c 2 such that -c dom('), o-

and (A0 " ) =M for some A0 > 0 for which for all

z we have lim IN7Nz - w zIN = 0,
N-w

then limIjN(t)rNz - N-(t)ZN = 0 for all z E Y, uniformly in
N-co

t on compact subsets of [0,-).

Section 2. Preliminary Definitions of Spaces and Norms

We now introduce some of the spaces and norms to be used in

later chapters and collect some facts about them. Denote by Hm

the usual Sobolev spaces over [0,1] in one dimension. These

are

Definition 1.6.

Hm = 4: Dm-'1  is absolutely continuous on [0,1]

and Dm E L2 (0,1)}.

The usual norm on Hm is H0Im = Thus, H0  L TheHm  j =0 L2.Tu, - h

spaces Hm  with this norm are Hilbert spaces [47, p. 55; 1, pp.

44-47]. Moreover, the graph norm defined by

1012 1 1 + jDmO 12

G= L L nZ

is an equivalent norm to 1I [1 , p. 79]. Denote the norm in

H 0  by "I.

Since we will require functions satisfying certain prescribed
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boundary conditions, we will be concerned with certain subspaces

of Hm . We will also find it convenient to weight the norm in

those spaces in order to obtain dissipative estimates. In parti-

cular, define for a fixed a E R, a > 0

H (a) = {4 E Hm: *(0) = *(1) = 0, (D4)(0) = (D4)(l) = 0,...,

(D m-)(0) = (Dm-l)(l) = 0}.

with inner product

<O'j> ma = <aDm ,DmP> 0 ,

where <.,>0 is the H0  (L2) inner product. Denote the norm

induced by this inner product as -lm, Then H() is a Hil-

bert space and the norm 1m, is equivalent to the usual norm

on Hm (cf: [1, p. 158]).H m  on 2o ,

We will also need certain other subspaces of H2 .

Definition 1.7. Given a > 0, define

H2(a) E{ E H2 : 0(0) = 0(0) = 01

H 2 (a) H{€ E H2: 0(0) = 0(l) = 0'(0) = €'(1) = 0}

H H2 : (a0 = '(0) = 0}

where H2(a) is equipped with the inner product

< '*>2,a = <a D2 'D2  C

2 2
Note that H2(a ) = H0 (a) as defined above. When a = 1, we

2 2
simplify the notation by writing Hk Hk(l).

2
Theorem 1.8. The spaces H are Hilbert spaces and the norm
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2

'[2,1 is equivalent to the usual norm H 2  on Hk for

k = 1,2,3.

Proof: The case k = 2 is well known (see above). We con-

sider the cases k = 1 and k = 3. First we observe that -2,1

is a norm on Hk:

since 1-12,1 is a semi-norm on H 2 1, p. 731, we only
2

need to show Jul 2 = 0 implies u = 0 for u E Hk , k = 1,3.

But 0 implies f 1 0, which implies D u = 0

a.e., or u = ax + b a.e.; furthermore, u, Du are absolutely con-

tinuous, u(O) = u(1) = 0 (if k = 1) or u(0) = u'(0) = 0 (if

k = 3), which implies a = b = 0.

2
1) k = 1. We first prove H is a closed subspace of H-

Suppose unE H 2 is a Cauchy sequence in the 1.12 norm; then

u -u E H 2 But unE 2 implies that u (0) = u (1) = n for
n  l0  n  I  n n

every n. Thus, un - u in H2  implies that un(0) - u(0), and

Un (1) - u(l), and so u(0) = u(1) = 0.

Next we prove 112  is equivalent to the I.IG norm (and

hence to the 1.1 2 norm.
2 02

Let u E H2  Then there exists a v E H such that D2 U v
0 ~ 22

and for every v E H 0  there exists u E H such that D2u = v,
namely u(x) = fx f01 v(s)dSdS - x f1 f0 v(s)dsds1 " Then, by

0 0 v ~dd 1  0 x f '

the Rayleigh-Ritz inequality [40, p. 5],

ul < 1 JDul 0

ID(r (1 v(s)dsds - x f1 f 1 v(s)dsds

o 0  0 
0

7rIxv(s)ds - f1 v(s)dsds 1 10
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< '{Ifx v(s)dsj + 1 f 1 v(s)dsdslj0}.- FT 0 0 0 01 "

Since v E H, Schwartz's inequality implies fo0Iv(s)Ids < "I0 .

Define g(x) E f Iv(s)Ids < 41V(s)Ids < vf0  for all x E [0,1].

Let c - vIjo. Then f 0 g(s)ds < f c = c. So, continuing the

chain of inequalities, we obtain

v(s)ds + fl Js v(s)dsdsl1 0}

- 7*J 0xIv~sJIus 10 + If' Jlv (s)Idsds 1 1 05

0 00 {0

1 + Icyo = = 2

But v = D2u a.e., so

u 10  7 1 V 0 7= I-D U 10  IT I 2'

and
2uI2 < 1D2u + uI2 < jD2uI2 + 4 Du2 2[D u 0 -0 0 -0 T -] D u 0

4 21

( + Iu
7T

or

Jul2 <_ Jul2 < (i + 4 )Jul .

Now, since the graph norm I.'G  is equivalent to the usual
2 j 22

H2  norm I.[22 [ ID ul0 on H, we have equivalence of 1'1,

to I'IG and Hto 0  H2 on H2 .

2) k = 3. The proof is similar to the previous case (k 1),

once we observe that u E H2  if and only if there exists a v E HO
32 x Sl

such that D2u = v, u(O) = u'(0) = 0, namely u = f0 f0 v(s)dsdsl"

The domains of the operators we will study will be certain

2
dense subsets of Hk satisfying particular boundary conditions.
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Definition 1.9. We say 0 satisfies boundary conditions of

type k, k = 1,2, or 3, if

a) 0(0) = 0"(0) = O(1) = €"(l) = 0 for k = 1,

b) €(0) = 0'(0) = O(1) = 4'(1) = 0 for k = 2,

c) (0) = €'(0) = "(l) = C''(1) = 0 for k = 3.

Define Hk = {€E H: satisfies boundary conditions of type k}.

Note that for the Euler-Bernoulli beam, a) corresponds to the

boundary conditions for the simply supported beam, b) to boundary

conditions for a beam clamped at both ends, and c) to boundary

conditions for a cantilevered beam.

We will also need to use the following fact:

H 4is dense in H (in the 1.10 norm).

This follows from the fact that Hm can be characterized as the
0

closure of C0(0,1) in the Hm norm [1, p. 44; 30, p. 91],

M 4 0
and that COc HO c YI k c H for m > 4; the result follows

since C0 is dense in H0  [i, p. 31].
0

Section 3. Splines and Error Bounds for Approximation by Splines

N
The approximating subspaces Z c Z will consist of sets of

cubic or quintic splines satisfying prescribed boundary condi-

tions. We begin this section by defining a particular class of

interpolating functions, the L-splines.
N N

Given any partition N = {x N= 0 = x < x < ... < XN = 1,
i i0 0  1N

the L-splines, as defined by Schultz and Varga (41], are piece-

wise continuous functions satisfying certain interpolating con-

ditions. The functions themselves belong to the kernel of certain
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differential operators on each [xi,Ki+l]. To be more precise,

given any differential operator L of order m

m
(1.12) Lu(x) aj(x)D3 u(x), m > 1,

j=O -

where a. E CJ[a,b], and given any partition AN, we defin. anJ

incidence vector d = (dl,...,dlN-i of positive integers with

1 < d. < M for 1 < i < N-i, and define the L-spline space in

the following way:

Definition 1.10. [41]. The L-spline space Sp(L,AN,d) is

the collection of all functions on [a,b] such that

L*Ls(x) = 0, x E [a,b] - AN

Dks(xi) = D ks(x.) for all 0 < k < 2m-l-d i, 0 < i < N,

where L* is the formal adjoint of L.

We will be interested in the specific case where L = Dm and

d = 1, 0 < i < N. In this case, the functions in Sp(L,AN,d)

are piecewise polynomials of degree 2m-1, with C 2m-2[0,1] con-

tinuity. In order to obtain error estimates for projections onto

spaces of splines, we use well-known error estimates for inter-

polation by L-splines. For our purposes, we require the type-i

interpolant of [41].

Definition 1.11. [411. Given f(x) E Cm- [a,b] and with L

the differential operator of order m, AN , and d as above, we

say a function s(x) E Sp(L,AN,d) is a Sp(L,LN,d)-interpolant of

f(x) of type 1 if

I
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i) s(xi) =f(x.), 0 < i < N

ii) (D ksflx.) = (D kf)(xi), 0 < k < rn-i for i =0 and i N.

It is known (411 that, given any f E C 2m- [0,11 there exists

a unique s E Sp(L,A N,d) such that s is a type-i interpolant

of f.

For each positive integer N, let 6 N = {X x. N i/N;
i i=0' 1

in the sequel, we will restrict our attention to such uniform

partitions of [0,1]. Also we take L Dm and d. = 1, i 1

...N-i. The corresponding spline subspaces will be denoted

S 2m-i(AN ) ESP(Dm,A N, d). Thus a spline of degree 2m-1 (order

2m) wili be a function s(x) E S 2- (A N) C Cm- such that 5(x)

is a polynomial of degree 2m-1 (order 2m) on each subinterval

[xi,x i.i1 defined by the partition AN In particular,

S 3(A N {s(x) E C 2[0,1]. s is a polynomial of degree 3

on Lxi,xi+ 1], i = 0,N-il

is the set of cubic splines (m = 2) and

S (L N) {s(x) E C 4 [0,1]: s is a polynomial of degree 5

on [xi,x i+i], i = 0,N-l}

is the set of quintic splines (mn = 3). The type-i interpolant s

to f E C 1(0,1] from S 3(AN satisfies

i) s(xi) =f(x.), 0 < i < N,

and

ii) s(O) =f(0), s(1) = f(l)

(Ds)(O) = (Df)(0), (Ds)(l) = (Df)(l).

Given f CE c2 [0,11, the type-i interpolant s to f from SS(AN)
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satisfies

i) s(xi) = f(xi), 0 < i < N

ii) s(0) = f(0), s(1) f(1)

(Ds)(0) = (Df)(0), (Ds)(1) (Df)(Z)

(D 2s)(0) = (D 2f)(0), (D 2s)(1) = (D 2f)(1).

These finite-dimensional subspaces S2m-l(AN) of H 2m- 1

possess a convenient basis (the B-splines) which will be defined

at the end of this section. Suffice it to say for the moment that

the B-spline basis functions have small (local) support which

make the spaces S2m-(AN) efficient for Galerkin-type approxi-

mations. The second advantage of splines is their approximation

power.

Since we shall be approximating functions using projections

of the form pN: Hk -. s2m-l(AN), k E {0,...,m-l}, we shall need

to obtain error bounds for such approximations by splines. The

following result for bounding the error in spline interpolation

will be fundamental in deriving error bounds for projections onto

subspaces of splines. While the results of this theorem have

been proved for general partitions (satisfying a uniformity condi-

tion max (xi+l-xi)/ min (xi+l-xi) < a, some a > 1) and
0<i<N-1 0<i<N-i 1

for the general L in (1.12), we state the results only for the

particular case we need.

Theorem 1.13. [44]. Given f E H2m , let s be the unique

element in S2m'l (AN which interpolates f in the sense of a

type-l interpolant. Then,

12m-j2mIDJ(f-s)lJ0  < Cjm(R)2m-J IDmfl0, j = 0,...,2m-l,

j .' m. N., ...0'.
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where c. are constants independent of f.jm

Remark. This result is proved for j = 0,,...,m in (41,

Theorem 9]. For the case where m+l < j < 2m-l, see [44, Lemma

3.1] and the references there. We will also need the Schmidt

inequality [40, p. 7]:

Lemma 1.14. If pn (x) is a polynomial of degree n = 1,2,

,5, then b[DPn(X) 2dx < E (b-a) - 2 fb[pn(x)] 2dx, where

Ei = 12, E2 = 60, E3 = 2(45 + 1605) z 170., E4 z 440, a5 z 738.8.

Now we wish to obtain error bounds for projections onto

certain subspaces of S3(A N ) and S(A N ) consisting of splines

satisfying prescribed boundary conditions. In [ 7], we proved

the needed results for a certain subspace of cubic splines, and

we restate those results here.

Denote by S3( N) {s E S 3(AN ): s(0) = s(l) = 0}. Given a

function z E H0 , denote by P0z its projection onto S (A

0 N N 0 3 Nin the H norm. P0  is the map P 0 satisfying

<z P0zs>0 = 0 for every s E SO(AN), or IP0 z-zI 0 =

inf{Is-z1 Is E S3(N)}. In [ 7], we prove

1s4 0 N
Lemma 1.15. [7, 2.3]. If z E H 0 H c H 0

, and P0  isN H0

the projection P0 : H-- S0 3(AN), then

IJD(P~z-z)I 0 < Kjj(1)4-j D4z,, = 0,1,2.

11Take HO(a) to be, as defined in Section 2, H 0  equipped with the

norm induced by the inner product <€'i> = <cD¢'Dp>0 "
l~c1 1N

Given a function z E H1  denote by P1z its projection onto the

subspace S3(AN). PN is the map PN: H1(a)- S3(AN)

0 1 1 0 j
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N 3 N
satisfying <z - PZs>l 0 for every s E S(A, or

IPN z-zlj a  inf{s-zI~ ,, I s E S3(A )N. In [ 7], we also prove

Lemma 1.16. [7, 4.3]. If z E H n H4  and P1  is theH1  S0( )ormthe

projection PN: H0 S N(AN  in the l norm, then

N z)I  < /a- K (1) 3 -jID4 zI 0, j = 0,1,2.

N and N

Note that P PN are both orthogonal projections onto

3(AN), but the projections are taken with respect to different

norms. Also, since H 4  is dense in H1 and in H 0 , the above

error bounds hold on dense subsets (H4 n H ) of the domain of

definition of the projection operators.

We wish to state and prove analogous results for projections

onto spaces of quintic splines satisfying prescribed boundary

conditions. Denote by S (AN) the collection of quintic splines

satisi xg boundary conditions of type k, defined in Section 2:

Sk(A) {s S (A N): s satisfies boundary conditions of

type k, k = 1,2,31,

= {s E C4 [0,1]: s is a quintic polynomial on each

[xixi+ 1], i = 0,...,N-1, and s satisfies the

boundary conditions of type k, k = 1,2,3}.

We shall again require two sets of projections. Those we need are

pN H0  S (AN
2,k - k(

and

25 N
P3,k Hk(O) Sk( ).

First, we obtain some preliminary bounds using the Schmidt inequal-

ity.
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Lemma 1.17. Let s E S N ( be a quintic spline satisfying

boundary conditions fo type 1, 2 or 3. Then

i) jDisl0  c cN 3Is-I0 ' 1 < j < 4

ii) ID 2  < C5N 1S12 ,,

and

Proof: Apply the Schmidt inequality:

JIDs(x)I'dx = f Ds(x)I < N 5 N2  ' f~~
f xi-l i- -L. i-l

since s(x) is a polynomial of degree 5 on [x i11] i =1

...,N. This implies i) with C^ 1 VE , j = 1. Let g(x) =Ds(x).

Then g is a polynomial of degree 4 o~ each [x i x1 J i 1,

...,N, aad

ID sx1 d) f 4N
2 ri g(x)12 2dxil(X

2x <~) 2d 1 1 Egx) 4 2dxl

4 4 N
2 Jllg(x)12 dx

E4N2fIDs(x)I1 dx

2 ~2 4 ls )2
c4c 1  IJsO jd

which establishes (i) with c^ 2 = S .I te ae

(j = 3,4) follow in a similar manner. Inequality (ii) is derived

in the same manner. Let g(x) = D 2s(x); then g is a cubic poly-

nomial on fx i 1 ,xi1, i = 1,...,N, and
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ID2 I, a ID g2g aj~ IjPx D'g(x)dx2 0~ xi_

N

= i D(Dg(x))dx

- i-i

< 2N 2 :i Dg(x)dx

pi-i

< a E2a3 N4 i  g(x)dx
i=l Ax.

2c 3  1 0

= c.2c 3N4 j s l
N4 2,

which proves (ii) with C5= 5 c2E3" Finally

2 2 N fx•

Is1 = aDslo- a Ifx D(Ds(x))dx2'a 0 x.
1-i

< a c4 N2  f' Ds(x)dx

lN fxi
< a E4 5N 4  1 x s(x)dx

- i=l xi -1

a 4 %.N
4  2

which establishes (iii) with c = a

6 4 5'

Finally, we bound the error for projections onto S for

k = 1,2.

Lemma 1.18. Let PN be the orthogonal projection PN
29kb 2,k

H 0  9 Sk(A ) with respect to the H0  norm, for k = 1 or 2;

then if z E { E H6 : satisfies boundary conditions of type k}
i) Ip Nkz-Zl0 < K2,(1) 6 IDo6 zo
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ii) IDJ(P N kZ1Z)O I 2 (1) 6 -j ID6 z , j 1
2 , k - 10 -< 2,j ND z 0 = 1 . . 5

and
ii N <a K < (1-) 4DD6 z1

iii) ,PkZ-Z12 ,a 2,2 1 6

Proof: The first estimate (i) follows directly from

IPkZ ZIO < IkZz0

where INz is the type-1 interpolant to z from S5 (A). Since

z satisfies the boundary conditions of type k, and type-1 inter-

polants interpolate these conditions, it follows that

INz E S (A N) Furthermore, the basic spline interpolation error

bounds (Theorem 1.13) hold, and thus (i) follows directly.

To obtain (ii), we write

(1.13) IDJ(PNkz-z)lo < IDJ(P N  -I z)Io + IDJ x k-z)l2k2,k k 0"

A bound on the second term in (1.13) follows directly from the

interpolation error bounds:

ID(INz-z)10 < ci,3(16-N~ z0

To bound the first term in (1.13), we again resort to the Schmidt

inequality, since PkN z INz E 5S(AN)2 , k IkZ € k

2 ( kzkI I2,k NjII N zIz by Lemma 1.17,
ImJ(N~k-I~) I < j P2,k z -  0

< 2cjN ' 6 c0,3ID6 z1 0 , by Lemma 1.13,

which gives us (ii) with K 2c C c Finally2,j j 0,3 j,3.
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IP N /aI2  vID 2(pNk Zi.}Io < /a K 1(k) 4 D z1. C

p2 ,kz-Z12,ct 2 2pkzz )0_ 2,2( 4DZo

The final projection error bounds which we shall require are

those for the projections in the H2(a) norm. Recall that

Hk - {2 E H2: 2 satisfies boundary conditions of type k,

k= 1,2, or 3}, and that 2 Hk(a) Hk equipped with the norm
• - < 2 ' 2">

'12, derived from the inner product <'D >2,D >

We define PN to be the orthogonal projection PN H2(a) --
3 ,k 3 ,k: k~~

S5(AN) satisfying

I =Ninf{Is-zl S N
3,kZ-z2, 2, Sk(AN)1.

Lemma 1.19. Let PN be the projection Pk: Ha) -(a)

S k(5N) taken with respect to the 1.12 norm. If z E {0 E H6 :

0 satisfies boundary conditions of type k} and k = 1 or 2,

then

i) IpN k <(1)4 D63 , k zl ,,, <3 o I l

ii) ID2 (PN,kz-z) 12,a - /a K3 ,2 (i)2 ID
6 zI0

iii) ID4 (P kzz) o _ K 3 ,5 ) D6 zjo •

Proof: Let INz be the type-1 interpolant from S5(L N) tok

z. Then since type-1 interpolants interpolate the boundary condi-

tions of type k (for k = 1 or 2), INz E S5(AN), and the spline

interpolation error bounds of Theorem 1.13 hold. The inequality

(i) follows directly from

IP NkZ.ZI < II2zNzI2, = _ID(I.zz) 0< 14 6z0

3 , o2, 2,a - 'r t

To obtain (ii), Write
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(11) D2 (N ID2N z-N 2 N
(14) I(P 3 kz-Z) < 3  kz) 12,_ ,+ D2('kz-Z)12,c

The second term of (1.14) satisfies

2( ~ (Nzzl < 1d c4 12
ID2  z-z)Iz,= V' ID4 (IkZ-Z)I 0  /a c 3() cD z1 0

from the spline interpolation error bounds (Lemma 1.13).

To bound the second term we again use the Schmidt inequality
and the fact that PN Nz INz E S S(AN)

3,k k k

ID2 (pN Z- 5N
2 pN kz-I N from Lemma 1.14,

3 , k kz)2, C- 3 ,k k ,ZI o

A 2 N + NiNlz )

-csN 23,k Z 2, 2 ,cx

/a 2N 2 IZDzz2 a

2 'f "N 2 ( z-z) 10

21 2 6= c5(N) c2 ,3 1Dzo

K 3,2(N) ID6z IO,
with K 3, 2  c4 3 + 26

5 c2 3 "

Remark. Projection error bounds for projections onto splines

satisfying cantilever-type boundary conditions (type 3) have

been excluded from the above. The reason for this is that they

do not fit into the above framework since the type-l interpolant

does not interpolate these conditions. Furthermore, the proof of

the interpolation error bounds requires that the interpolating

spline to f satisfy the first integral relation (cf: [48])

J (Lf) 2dx = I{Lf-s)2 + f(Ls)2dx,

0 00
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where L = D3  here. For this to hold, it is necessary that

f (D3 s)2dx = (-14 s(D 6 sldx.
0 0

But the integration by parts fails for type 3 boundary conditions.

However, our numerical results suggest that the projections

PN and PN when k = 3 satisfy error bounds similar to
2 ,k 3 ,k

those for P N and PN when k = 1,2.
2,k 3,k

In addition to their strong approximation properties, the

-N
spaces Sm-I (AN ) are attractive computationally because they

possess a computationally simple basis of small (local) support,

namely the B-splines. The B-splines are compactly defined as

differences of the truncated power basis functions.

All the B-splines are translates of one basic B-spline.
Define nn(X =nxy) n i -1

Define ( = 6 (x-y) = (-i)1(')(x-i)+ , as the basici=O

B-spline with knots at 0,1,...,n, where 6n  is the forward

difference operator 6f(x 0) = f(xl) - f(x0 ),...,6k+lf(x0 ) =

6kf(xl) - 6kf(x 0 ), and where

(xt)n 
1  = (x-t) n -  when t < x

+ 0 ,when t > x

is the truncated power basis function.

2m-1 NTo define the B-spline basis for S (AN), take n = 2m,

and define

n-l(x) = B((x-y,)/h)
i , n-1

where h = x i+l - x i and where we have defined an extended

partition EN = {x N+m- x = ih, of AN, and yi = x. - mh.
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Remark. With the B-splines defined in this manner, BN
i,3

agrees with the Prenter definition of cubic splines [35]. Its

relation to the normalized B-splines of DeBoor (cf: [42, p. 135])

is given by BiN - 1 Nin
( Tm- l) i

The support of each B-spline B i,2m- is the interval

[Xim, Xi+m], and it is easily shown [42, p.116] that the N+m+l

B-splines } N IN+m-i span S2m-l (AN) Moreover, since allB-spine { ,2m-1 i=l-m"'

B-splines are obtained by scaling and translating one basic B-

spline, it is efficient to store a function s E S 2m-I(AlN  by

storing its coefficients: s E S2m-l (AN) implies s(x) -

N+m-i N
ciB ,2m-l(X) The computational aspects of B-splines will

be explored in Chapter 4.

Finally, recall that we require approximating subspaces in

Dom(-Q). Thus we will require our spiines to satisfy the boundary

conditions. For the cubic splines in S(AN ), we require s(0)

s(l) = 0. We may take from the N+3 basis elements in S 3(L )

the following N+1 basis elements for S3(LN):

N N
1,3 i,3' 1 =

N AN N
(1.15) B0 , 3 : B - 4B_ BN B B A0,3 -1,3 B1 3  B1 3  0,

N ^ A
N  NN

N-,3 BN-,3 BN ; BN, 3  N,3 4 N+I,3"

The same approach can be used to obtain a basis for quintic splines

satisfying boundary conditions of type k. These are listed as

follows:

i) To obtain a basis for SI(AN) take from {BN }N+2

1 ' t ,5 i=-2

the following N+l splines N (dropping the second sub-

script)
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N = ^NB =B 1  3 <i < N-3

^ N

N -'N 33N + 6"N

W = B - 3W + 12W

Bllb 0 0 -' 1 4-2

N ^N 9^B1 = B1  B_B

N ^N 1N

B +B -B

2 2 2

with BN3(x) = BB (-x), j = 0,1,2.

ii) To obtain a basis for S2 (AN), take

N =N 33 ^N 165 "N0 B0 -1- 4 -2

N 9 "N 6
(1.17) BN 1 B - -B + 2

1 ^N
B .= 8 -1 4 -B2

with gN = ,N 3 < < N-3 and BN(x) N (l-x), 0 < j < 2.

j - _ -

iii) For the cantilevered beam, we obtain a basis for

byving tkingd B l n 3  as in ii) and

BN  N +3 N +"N
N N N-I 3N+2

N "N "N
(1.18) B. -- BN_ - 2BN

N ^N 1l"N
BN-2 = N-2 -2- N+l

Having defined the IDA problem and its approximation IDN, and

having defined the spline spaces necessary to set up the approxi-

mating subspaces Z, we now proceed to some concrete applications

of these ideas.



33

CHAPTER 2. APPLICATION TO TIlE EULER-BERNOULLI EQUATION

Section 1. The Euler-Bernoulli Equation with Structural and

Viscous Damping

Having introduced the basic ideas for the parameter estima-

tion problem, we turn to the application of these ideas to

specific equations arising in elasticity. In this chapter, we

discuss the Euler-Bernoulli equations. The well-known equations

for the transverse vibrations of a thin elastic beam are

k= El
ax

( 2 . 1 ) 2 D 2 4,
( 2 +.1) f(t,x;q)

where _ is the bending moment, m is mass per unit length and

f is the applied load. We wish to include two types of damping

in the above model. The first is velocity-proportional viscous

damping yyt, The second is structural damping arising from a

simple viscoelastic model, the Kelvin-Voight model, where we have

the constitutive relationship a = EE + ci, where aE are the

linear stress and strain, E is Young's modulus, and c is the

damping coefficient. Thus we introduce damping proportional to

strain velocity.

Following the usual development of the Euler-Bernoulli equa-

tion (14, pp. 295-302], we obtain

41df tydA = El 2a + o
ax ax at

and the equation (2.1) becomes
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(2.2) Ytt= -aDy 6D4Yt Yyt + f, t > 0, x E [0,1],

where a > 0, 6 > 0, y > 0.

In setting up the operators and appropriate spaces below, we

shall consider only homogeneous boundary conditions of type k

introduced in Definition 1.9. This results in no loss of general-

ity of the methods, since any non-homogeneous conditions, includ-

ing time dependent conditions (which can occur due to applied

moments and shears at the boundary) may be transformed (see [291)

in a manner that reduces the equations to ones with homogeneous

boundary conditions and an additional "load" term included in f.

Within the framework we have established, a variety of ap-

proximations may be used. Recall that we rewrite the boundary-

initial value problem as the abstract equation

i(t) =_W(q)z(t) + F(t;q) on Z

z(0) = z0

and then approximate _t by a sequence of equations of the form

N N NN

i (t) =Y N(q)z (t) + F N(t;q) on ZN

N N
z (0) = z0 .

One way of obtaining different approximations clearly is by making

different choices for _QN. We discuss only the choice

_QeN N N= P"/P here, but other choices are possible. For example,

if s exists as a differential operator, then AN / pNq pN

can be used (see [27]).

Additionally, the choice of state spaces and the i,,m of the

evolution equation on these spaces leads to different natural
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approximations; it is this difference we wish to examine here.

In particular, for the equation (2.2), we shall write

)= (q)z(t) + F(q,t)

z(O) = 0

(2.3) 01
_€(q) = D-qlD4  -q2 D"q 3 ]

=2 0
in X = Hk(a) x H

or, (when y = 0)

r(q) i(t) =_. j(q)z(t) "- F(q,t)

z(O) = z0

o 1 1
= 0 0

(2.4) D 0

1 0 0

r(q) = 0 1 q 2 D2

0 0 1

0 0 0
in X = H0 x H x H

where q, = a, q2 = , q3 
= Y

As we shall see, (2.3) leads naturally to quintic spline

approximations which are discussed in section (2) and (2.4) leads

to cubic spline approximations which are discussed in section (3).

* ,, FT l' "' " ' . . . ... . .. . . . .i a "'
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Section 2. An Approximation Using Quintic Splines

In order to investigate and approximate solutions of

[ t ayxxxx 6 xxxxt + f

(2.4) y(O,x) = O(x)

Yt(Ox) = V(x)

where y satisfies boundary conditions of type k, we write

(2.4) as abstract equation in a subspace of H2 x H0

2(t) =/(q)z(t) + F(q,t), t > 0
(2.5)

z(0) z0

T TTwith z(t) = (zl(t),zE(t)) E (yzt.),Yt(t,')) z = (,1p)T

Tand F(q,t) = (O,f(t,.;q)) T , and

qlD 4  -q 2D 4

where ql a, q2 E 6. In particular, for each of the boundary

2 0conditions of type k, k = 1,2,3, we consider (2.5) in Hk x H

and -Q1 to be of the form ., with Dom(nk = 4x Hk .
k -k kmk

We derive the important properties of these operators which

will be used to prove convergence of the approximate identification

problem associated with (2.5).

We first consider the special case where 6 = 0 (no damping)

and denote the corresponding operators by 1 k (i.e., -k is

k~ inc i
k case q= 0). In this case, we can define the operators

JQek in such a way that maximal dissipativeness can easily be
kA

argued in the following way: we will show that -' i  and -V
i 1

are disspative, and -Sr is closed; maximal dissipativeness then



37

follows [25, Theorem 4.4, p. 87].

To extend the results to the case 6 > 0, we will also need

to prove dense inclusions of certain subsets of Sobolev spaces.

To do this, we will use the following lemma:

Lemma 2.1. Let Ql: (Dom({/) c X) - X be linear, X a Hil-

bert space. If Q satisfies the dissipative inequality

<-Qx,x> < 0 for every x E Dom(-) and if R(-'- XI) = X for

some X > 0, then Dom(V) is dense in X.

Proof: Suppose Dom(W) is not dense. Then, there exists

a non-zero x0 E X such that <x0 ,x> = 0 for every x E Dom(e).

Since by assumption R(V- XI) = X for some A > 0, it follows

that x0 = ( - AI)y 0  for some non-zero y0 E Dom({Q'). There-

fore,

0 = <x0 ,x> for every x E Dom(;)

= <x0 ,y0 >, in particular,

= <(_C'V- I)yo,yo>

= <_J'yOYo> - Xlyo 12

< <-eyO,YO > ,

which contradicts the dissipative inequality on -.

Corollary 2.2. Let _': (Dom(. ) c X) - X be linear, X a

Hilbert space. If -Q( satisfies a dissipative inequality

<Vx,x> < 0 for every x E Dom(.W) and if R(-W) = X, then

Dom(-W) is dense in X.

Proof: R(jj/) = X implies 0 E p(sV), the resolvent set of

-. But p(-Q) is an open set, and thus there exists a A > 0

such that X E p (.Q) and R(_W- XI) - X. The above theorem now
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yields the result. o

Finally, we will obtain the desired results for the case

6 > 0 by taking maximal dissipative extensions of -" We con-

sider the six cases corresponding to Q¢k k = 1,2,3, and

k = 1,2,3.

Case 1. Consider the case corresponding to a simply sup-

ported beam. Consider the operator in Z = H2(a) x H

[0 4
1 on Dom( 1 ) = x x H

1 a 4 0j - 1 H1

where

4 4

H1 : : 4(0) = H"(0) = l() = (1) 0}

H :{¢ H2 : ¢(0] = 4(1) = 01
2 2

and Hl2(a) H1  equipped with the inner product

< 2,' = < 0D 2 . D2">0

Lemma 2.3. < iz,z> < 0 for every z E Dom( l).

Proof:

<~:; (Z 1 ) (i> Z > + -D4zl>
lkz2 ' ( > 2 <z 2 ,z>2  0

1 aD 2 zD 2  + J -a(D 4 z0 1 2 0 l)Z2

0 for every z E DomQ(¢l).

Lemma 2.4. R(JQ1)= Z.

Proof: We show that for every (f,g) E Z, there exists a

(Zl,7 2) E Dom( wl) such that l(zl = (f) take z f and
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3z (x) = GI(x) xGI(1) (x /6 x/6)G'(l) where Gl(X)

x s3 fs2f g(s)dsds d s Then (zI Ez2) E H1  H1
j 0  0  10 0 2s3H

Dom C;4) and - ( = z)-(D4z"

^2 2Lemma 2.5.-i is densely defined. Hence HI  is dense in
04 2

H and H1 is dense in H(c).

Proof: Corollary 2.2 and R(- 1 ) = Z and dissipativeness

of - yield this result immediately.

Lemma 2.6. ( is skew-adjoint: Q =-

Proof: First, we show&* - " Let z = (zl,z 2 ) E1 2

Dom(&;'l) , and find all w, v such that < i z,w> = <z,v>. Thus

w,v E Z must satisfy

f0 cD2 z2D
2W, - f1 aD4 zlw2 - f ctD2 z1 D2 V 0 z 2 v 2 = 0,

where w = (wlw 2 ), v ; (vlv 2 ). Or, integrating by parts,

(2.6) z2 .AD
4 W-V 2) + c[(Dz2)(D 2wl)] - fa(D2zl)(D2w +D2vl)0o2 - 0 0 w

-[D 3zlW2 I11]= 0,

%here we have applied the conditions on z E Dom(_I 1l), w E Z.

Thus, if

4
vw2 aDw 1  4 2

D2V = -DH2w

and if w"(0) = w"(1) = 0 and w2 (0) = w2 (l) = 0, then clearly
A A

(2.6) clearly holds, or -J' is adjoint to J 'I. We now show

-A-4
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is the (maximal) adjoint operator; i.e., c- l:

Let g E Dom(-Q), f-- g; we show f = g and

g E Dom(_ 1 ). We have

<z,f> = <zA&*g> = <J:V z,g> for every z E Dora 1),

or, with f (fl,f 2 ), g- (g 1 ,g 2 ),

J I a (D2 zl)(D
2 fl) + i z2f2 - (D2z2) (D2 g )0 0 0

+ a(D 4zl)g 2 = 0,^0
for every (z 1 ,z 2 ) E Dom(_'). Define hl(x) - f2(s)dsdsl-

flri (s)dsds1 . Then h, (x) satisfies h" , a e.,

hl(O) = hl(l) = 0. Integrate the above by parts to obtain

f 1 4 2 1 3 1 12

a(D zl)f 1 + c[(D z1)Dfl] 0 - a[(D z 1 )fl] 0 + (D z2h 1
0 0

1- - a(D 2 2)  + a(D 4Z l 0.
z(Dhl) 0  (Dz 2 h 1 0 0 0z2)( g 0

But, f E Z implies f1 (0) = fl(l) = 0; also, z E Dom(Cl) im-

plies z 2 (0) = z 2 (l) = (D2 z)(0) = (D2 z1)(l)= z(0) = zl(l) = 0,

and so this becomes

al(D zl)(f 1 + g 2) + f(D 2z 2 )(h 1 - aD 2 g 1 ) = 0.
0 0

Since the first term is independent of the second, this is equi-

valent to the pair of equations

f(D4z 1 )(fl + g2 ) = 0

and

0(D z2 )(h I - aD 2 gl) = 0.0i
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2 4 4
Now, for every v E H there exists zE H such that Dz I =v

2
so that fl + g2  annihilates all v E H1  and so f + g2  0.

So we have = -fl E [12

0 2
Likewise, for every w E H , there exists z2 E H1  such

that Dz2 z w and so (hI  aD2g 1 ) annihilates all w E H0.
DDz I wg I-aD 2

I

This implies hI - = 0. Hence,

1~~~~~ 1D g1 = 0xec , D g
1 (xs I f2 (s)dsds x f2 (s)dsds1 ), D

3 g1 = f (s)ds -0 01 00 0 0

lns l  1 f a e., which implies D3g10 0 f2 (s)dsds ), and D =gl a 2 "'

is absolutely continuous and D4g1 E H and so g, E H4. Further-

more, (D2gl)(0) = .1 hl(O) = 0 and (D2g1 )(1) = I hl(l) 0.

2 0This, along with the fact that g E Z = H1 x H , implies
4g1 C H1.

Thus, g Eg 2 = dom(_l) and (1)g = f
(l'g2) H1  H1

- or This proves the desired result, since

Lemma 2.7. j'i is a closed, maximal dissipative operator,

and is the generator of a CO  semi-group of contractions on Z.

Proof: That J'i is closed follows from

= =

We can also establish maximal dissipativeness easily by noting

that

( *zZ> = <--Q( z,Z> = 0.

This implies that -Q? is maximal dissipative by a theorem of

Krein (25, p. 87]. That (1 is a generator then follows by
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another result [25, 4.5, p. 88].
4 2 1 i

Remark. We have shown that H1  is dense in H 2 n H0  in

the 1'12, norm by showing that-QV is densely defined in Z.

In this case the result can also be argued using the fact that
10

A with Dom(A) = H 2 fl H1  is self-adjoint in H0  and the re-
0

sults of Goldstein [18, p. 86].

Remark. Since Q 1  is skew-adjoint, we could also have used

Stone's theorem [18, p. 22] to argue that -l generates a CO

group on Z. However we emphasize the role of dissipativeness

since we require this in the case 6 > 0.

Case 2. This case corresponds to a beam clamped at both

ends. Consider the operator in Z = H2 (a) x H0 given by
2t

0 1 4 nDm()H
2 -aD4  0 on Dom 2) = H2  H2

where

H2 = (0 H: (0) = 0'(0) = 0(l) 0 0'(l) = 0}

H2 = {0 H: (0) = 0'(0) = €(1) = (1) = 01

and

H 2 (a) = H2  equipped with the inner product

2aD 2

'>2,a = 1D >

Lemma 2.8. <k 2z,z> < 0 for every z E Dom(Q' 2 ).

Proof:

^4 aD4z< 2 ~ > = <z , l 2 + <-aD2>
2,<a i',
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r 1 2 zD2 r aD4
= J a z + J D4Z 1 Z 2

0 2 1 012

Ii1 D2

= aDz 2  z I - a[(Dz z 2 ] 1 a[(D2 z)(Dz 2 )] 1

0 00

0f aD 2Z D2z2

0 for every z E Dom(g 2 ).

Lemma 2.9. R(:2) = Z.

Proof: We show that for every (f,g) E Z, there exists a

(Zl,Z2) E Dom(-' 2 ) such that 2(z2 = (): take z 2 = f, and

Z(x) = G,(x) - (3x2 - 2x 3)Gl(1) - (x 3-x 2)G(1) where

Gl(x) - . J0JJ0 g(s)dsdss 2ds 3 . Then, (zlz 2) E

H4 x2 z2(w~) ~ Z 1H2 x H2 =Dom(_w and 2z) = (-tD4 z 1 )

Lemma 2.10. JW 2 is skew-adjoint: 2 = 2"

Proof: First we show 2 = -Q2( Let z =(ZZ E Dom(2

and w = (w1 ,w2 ) E Dom C' 2). Then we show <W.2z'w> = <z,-Sv2w>:

W> 1 2 2 1

< 32z Iw> - <z,--a'2w> = D z 2  + J -1 0 (D4z1)w2

- f a(D2zl ) (-D2w2 )

f z 2(aD 4Wl1)
02

- 0.

Thus, -- C is adjoint to -Ql . Now we must show -- 1( 2 .2 2'2 2 *
Let g E Dom(-W5), f - -;g; we show f = --. 2g. We have

<z,f> = <z,-W*g> = <s2 Zg> for every z E Dom(iV or,
2 2 2)
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2 gl + af0 D4 Zlg 2 = 0

for every z = (zl,z 2 ) E Dom(W 2). Denoting hl(X) -

Ix s l f2 (s)dsds + ax + b, where a,b are arbitrary, a E R, b E R,0 0 - x
and h2 (s) - f2 (s)ds + a we integrate by parts to obtain

fx(D 4 zl)fl + a[(D 2 z)(Dfl)]1 -[(D 3z )f 10 + f'(D2 z 2 )hl
f0 021

1 r 2  2 g)+4l
(z h9 I ((z)hl aJ (Dz 2 (Dg1  + a(Dz)g =0

0 j0
2 0

But, f E Z implies f1 E H2  and f H , so the first two

bracketed terms vanish; likewise z E Dom(-/) implies the last

two terms in brackets vanish. Thus, we have

fl a(D 4 z1 )(fl + g 2) + f (D 2 z 2 )(h 1 - aD2 gl) = 0.

Since these two terms are independent, this is equivalent to the

pair

a f (D4 z1 )(fl + g2 ) 
= 0

0
and

f(D2z 2) (h1 - aD2g1 ) = 0
0

4 H Thus 2l + g2  0 impliesfor every z E Dom(2) H 2 x H2. Thu

= E H 2

2  1 1  IfXfSl f 2  1  (s)ds + aD - 9- = i = a 0 0 f2(=s+ a , D g fo 2(s d

4 =1 0 im l e , E H4 an
is absolutely continuous, D - f2 E H implies gl E H and

g E Z implies g, E H 2 so that g, E H n H = H2. Hence
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g E Dom(' 2 ) with /*g = f = - 2 g,r c -'2" Thus

2 2

Lemma 2.11. 4/2 is a closed, maximal dissipative operator

and is the generator of a C0  semi-group of contractions on 7.

Proof: Identical to the proof of Lemma 6.
4 2

Remark. The statement H2  is dense in H 2  (in the usual

H2 norm) follows directly from the fact that C' {E CE0

has compact support ir. (0,1)1 is dense in H2 and
4 2

Co c H2 c H2  (cf: [30, p. 91]).

Case 3. Finally consider the case corresponding to a canti-
o H0

levered beam. Consider the operator in H3(a) x H given by

^ [ 0 1 I  ^o 4H 2

3 04  1 on Dom( 3 ) = H3 x H3
-tD 4  0

where

3H 4 E H: 4(0) = €'(0) = (i) = 0"'(i) : 0}
2 H

H= {E H2 : 0(0) = 0'(0) = 0}

2 2

and H3(a) is H3  equipped with the inner product <''>
3 3 2,at

<ctD2 . ,D2 .>0 .

Lemma 2.12. <Y3z,z> < 0 for every z E Dom(C:. 3).

Proof:

Z3 z + <-c 4z19z2 >03 21z 1 Z>2,a 2I 0

S1a(D 2z2(D 2Zl) + 11 - a(D4zl)z 2

JO
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g E Dom(-dZ2) with -2/*g = f = -'-Wg, or-a, * c - Z" Thus
^ '2 Th

Lemma 2.. :2 is a closed, maximal dissipative operator

and is the generator of a C0  semi-group of contractions on

Proof: Identical to the proof of Lemma 6.

Remark. The statement H is dense in H2  (in the usual

H norm) follows directly from the fact that C0 {0 E C

2has compact support in (0,1)1 is dense in H and

C0 CH H (cf: [30, p. 91])2

Case 3., Finally consider the case corresponding to a canti-
2 H0

levered beam. Consider the operator in H3(a) x H given by

f 0 1 A 4 23 -aD4  0 3
= -a on Dom(/ 3 ) = H3 x H3

where

H {4 E H4: (O) = '(0) 0 4"(1) : "'(1) : 0}

2 2{ :€ o ¢ ( ) : o

and H2(a) is H2 equipped with the inner product <">2,-

<cD 2 . D 2 .>0.

Lemma 2.12. <W3 z,z> < 0 for every z E Dom( 3).

Proof:

<^ _ 4z
- <z3zl> + <- D z1 2 >0z , Z > < z 2 , z 1> 2 , 0, ' -x i ' z 2

1 1
- (D2 z2 )(D2 z) + -

l (D z1)z2
0o JO
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2l 32 D 1 D2 1c (D z )(D Z a [(D3z)z + [ Z )(z

2 1j 1 2 0 1 D 0

f a (D2 Zl) (D z2 )
0

= 0 for every z E Dom( 3 ).

Lemma 2.13. R(S;/3 Z.

Proof: We show that for ever), (f,g) E Z, there exists a

(Zlz 2) E Dom(. '3) such that -k/3,z) ( ) 2 = f, and
2  3  2

= G(X) - G (1) - - )Gj"(1) where

G (x) = 3 2 1 g(s)dsds s2ds Then, (zlz2 ) E 1 3  x H3  =1 0 0 0 0 s 3

Dom(j3) and 4 (aD41l
* A

Lemma 2.14. is skew-adjoint: - 3"3 3 3

Proof: First we shoij* -. '.. Let z = (zlz 2) E Dom( 3 )3 23

and w = (wl,w 2) E Dom(-W 3). Then we show <xag 3 z,w -- <z,-W 3 w>:

,,, fl f22 l 4
<-;/3 -w> <z, --W 3w> = J aD2z2 D2w1 + J -(D4 z1 )W20 0

a(D 2Zl) (-D2w2) - f z2(aD4Wl )

00

= 0.

Thus, -i ' is adjoint to s/3 Now we must show c
3 '3 3 *

Let g E Dom(Qae), f = aWg; we show f - We have

<Z,f> -- a =g> = < 3 z,g> for every z E Dom or,

Sa(D2 Z)(Dfl ) + f zf - 4 0(D2 z2 )(D
2 g) + a (D4 Z)g 2  0

for every z = (zlz 2 ) E Dom(' 3). Denote by h(x) the function
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h(x) -= 1 f 2 (s)dsds 1 - f 2 (d)ds - f 2 (s)dsds,

+ J f 2 (s)ds

satisfying D2h = f2 P h(1) = h'(l) = 0. Integrate by parts to ob-

tain

a(D4 z )fl + a[(D2 zl)(Dfl)] - [(D3Zl)fll1+ (D2z 2 )h
0 11100 l 2

1 _ I (2gl)4 1

+ [z2 (Dh)] 0  [(Dz 2 )h] - (D'z2) (D 2 g) + a f(D4 Z)g 2  0.

But f = (flf 2) E Z implies fl(O) = fl(O); likewise,

z E Dom(_W 3 ) implies that z 1 (0) = zl(0) = z (1) = z{ (I) = 0

and z (0) = z2 (0) = 0. Thus the above becomes

Sct(D 4 z)(f+g 2) + (D 2z2 )(h - aD 2gl) = 0.
0 0)f+2)+f

Since the first term is independent of the second, this is equi-

valent to the pair

f(D4z 1 )(fl + g2) = 0

and

1f (D2z2)(h - aD 2gl) = 0.
0

Thus, f1 + g2 = 0 which implies g2 ; -fl E H 2. Furthermore,
21 3 12 92 =

h - aD 29 = 0 implies D 2 9, = 1 h, Dg 3 g (fj f2 (s)ds-
1a f1d 4a

0 (s)ds and D49l = 1 f 2  so that D3g1  is absolutely con-0 4 0

tinuous and D4g1 E H0  which implies g1 E H4  Also (D2gl)(1)

1 h(l) = 0 and (D3gl)(1) = 1 h'(l) = 0. This, together with the

fact that g = (gl,g 2 ) E Z = H2 x H0 , implies that g E H4 x H3 =

Dom( 3), with g f = - 3 g, or - This proves
3 3 .... 3 3
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the desired result, since we already have r -3
3 3

Lemma 2.15. (3 is a closed, maximal dissipative operator

and is the generator of a C0  semigroup of contractions on Z.

Proof: Identical to the proof of Lemma 6.

Case 4. Now consider the general case corresponding to a

simply supported beam with internal damping. Define the operator

- ( in H2(a) x H 0 = Z by

0 1 1 44

1 _ aD4  _D 4  on D =1 x H1

where a E R, a > 0, 6 E R, 6 > 0,

2 2
H1 4 H: O,) 01

H1 = {E H : V(0) 00() = ¢1) = "(1) = 0}

2 2 2 2
and H1 (a) is H with the inner product <'>2,a <aD 2"D 2>01

4 isdnei 0 adb em
By the results of Section 1.2, H1 is dense in H and by Lemma 2.5

4 2above, H1 is dense in H1 (a); thus -1 is densely defined.

Lemma 2.16. - I is dissipative.

Proof: Let z = (zl,z 2 ) E Dom(-'1 ). Then,

44<-Qz,z>= <Z2 Zl>2a + <-aD z1,z2 >0 + <-6D 4 z2,z 2 >0

= a (Dz 2)(D
2 zi) + f (-aD 4 z1 )z2 + (-6D z2 )z 2

00 0
a([(D 3  1 - 12 1 1 22

z)2 0  [(D2Z 1 )(Dz 2 )]0) -6j(Dz,)

6([(D z2 )z210  1(D z2)(Dz 2)]0 )

- 6[D3 z 1 [( 2 D 1) -6(D 2 z 2

< 0 for 6> 0.
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2 2
Remark. Note that we required (D z2)(0) = (D z2)(l) = 0

to establish the dissipative inequality, and this is one reason

for including these conditions in Dom( l).

-' itself does not generate a C semigroup on Z, since1 0

R(_Q 1 - I) Z. towever, 1 does possess a maximal dissipative

extension ii which is closed (cf: [25, p. 871). In the case

S= 0, we have seen that the maximal dissipative extension is -W1 "

Since Dom(-QV) is dense in Z, the following dense inclusions

hold:

Dom(j/l ) a Dom(-Vl) C Z,

and the maximal dissipativeness of J I  is sufficient to ensure

that it is the generator of a C0  semigroup of contractions on Z.
2 0

Case 5. Consider next the operator in Hjct) x H given by[ 0 1 'j4 4
= on Dom(- 2 ) = H x H2 , a'6 > 0.2 _aD 4  _D 4  2) 2 2

This corresponds to the beam clamped at both ends as in Case 2,

but with internal damping included.

Lemma 2.17. Q'W is dissipative.
2

Proof: See Lemma 2.16. The same integration by parts yields
1 2 2

< -2z~z= "6f (D z2 ) 2 < 0

for every z = (zl,Z 2 ) E Dom(-'2). o

Since R(-W 2 - X2 ) Z, we will again need to take a maximal

dissipative extension -W 2 where

Dom( %( 2 ) c Dom( W 2) c Z
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are dense inclusions. Lemma 2.18 and a theorem of Krein [25, 4.3,

p. 87] are sufficient to guarantee the existence of-s . In the

case 6 = 0, we have seen that 2 . By another standard re-2 2 B nte sadr e

sult ([25, 4.4, p. 87]) '/2 is closed, and generates a CO

semigroup of contractions on Z.

Case 6. For the final case we wish to consider, we take the

operator in Z = H3 ,a) x defined by

3 -aD 4  _6D4  Dor( 3 ) 3

where

H4 { E H 4  0,,,,H3 = :t €(0) = P'(0) = 4(l) = ¢ {(l) = 01,

2 {€C 2H2 = : €(0) = E(H) = 01,

3

and
2 2

H 2(a) = H3  equipped with the inner product

>2,a = <aD2 D2">0

Lemma 2.18. -g3 is dissipative.3

Proof: See Lemma 2.16. The same integration by parts yields

<-Q(, z,z> = -6 (Dz 2 ) < 0 for every z = (zlz2) E Dom{. o)

Qe has a maximal dissipative extension .'Q by the theorem of

3 31yth hormo

Krein [25, 4.3, p. 871, and since Dom(..'3) is dense in Z,

Dom(.V 3 ) c Dom (-V3) c Z where all inclusions are dense. Thus

[25, p. 881 -£1 3 generates a C0 semigroup of contractions on Z.
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We shall require certain dense subsets of smooth functions

in Dom(Q'k) to apply Proposition 1.5 (Trotter-Kato theorem).

To construct these dense subsets, we will use eigenfunctions of

D4  on Dom(D ) = H4

2We first note that if u E H k, k = 1,2, or 3, then

max lu(x)l < Klul 2,
and

lu(xl) - u(x2)l K -2 lu 2.

These inequalities follow from an application of the Cauchy-

Schwartz inequality and from the fact that for u E H k, lull

Klu[ 2  for some constant K (this is true because 1-[i and

112 are equivalent to the usual H1I and H2 norms respect-

ively on Hk and ulH 1  In particular, for u E H2

k l uIH 2)-k'

xlCx 2 E [0,1], u(x2) = u(xl) + f 2u(E)d implies

x1
lu(x2)-U(Xl) '2 < J2C2_ u'( )d j 2

< lx2-x I Iu' 2 , by the Schwartzinequality,

= 12 li u2 < K 2 lx- lul,.

Then we obtain from this (with x1 = 0) that

Iu(x2)l < K Vi2 Iu12  for every x2 E [0,1]

which implies the first inequality. Thus an application of the

Ascoli Theorem (see (38, pp. 249-250]) implies that from every

sequence {u (x)1 which is bounded in the norm of Hk2 it isn k
possible to select a uniformly convergent subsequence. Addi-

tionally, for any two elements u,v E H2

k4
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H1u,v>oI <maxlul maxIvI Klutlvl2.

Now let Bk, k= 1,2, or 3 be the operator D in Hk with
4 -1I

Dom(Bk) = Hk. Bk exists (see proofs of Lemmas 2.4, 2.9, and

2.13), and

<Bk u,v>2 = <u,v> 0  for every u,v E Hk.

Bk is clearly symmetric and furthermore it is a compact opera-

22tor on Hk: given a bounded sequence {u (x)} in H, we cank n k

select a uniformly convergent subsequence {vn(x)}, and

<Bk (vn-vm),vn-vm>2 v m nV m 0

0 Ivn-vm2dx ---- 0,

and thus [38, p. 206] is a compact operator from X = Hk

into X.

For the moment, fix k = 1,2, or 3. Since B-1 is symmetric1'
and compact, standArd results [45, p. 3431 imply that Bk has a

complete orthonormal set of eigenfunctions ln and associated

eigenvalues An, and f = [ <f, n>2'n for every f E Dom(Bk) = Hk.
1

We have B = Unn, where In = 1/A

We can construct a dense set in H0  by taking 0n = /-- nIP

Then, since for every f E H,

<f'n> 2= <D2fD 2 n> 0 = <fDd n>0 = <f'pn'n>0 = <f'n> 0 Vn

m
we have I <f, n>2n f -- 0 implies that

m 1

I < n>00n f12 -- o 0, which implies, since the norm 1.12 is

..
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m

stronger than the 1.10-norm, that <fn> n -IO 0 for
4

every f E Hk. As a consequence, the set span({en}) is dense

0 40
in H , since Hk is 1.10 -dense in H0. Also, Bkn = V k n for

n = 1,2,....

The smoothness of the functions 1n n (we shall only re-

quire H6  smoothness) follows from the fact that Bk2n I UkIn

implies that E Dom(B2) = H8, and similarily for cn

Thus for our dense subsets of smooth functions in Z = H xH 0 ,
k

we are led to define

= I'Y 2 ,jYl'j 0 C

N NN N0Let 3N= span{y I ,j = U span{y 2 , and 0= U .N. Clearly,
1, I= 2,j ji1

by the above, 9 is a dense subset Z, and O c Dom(Q/k) c

Dom (-Qk) c Z.

Remark. The set {¢.} associated with B-1  and the set -k
constructed from the c. will clearly be a different set of func-

tions for each k. Since their properties are the same, we de-

note these by the generic symbols {¢.} and - where it is

2
understood by context that these represent the functions in Hk

and H 2 x H0 respectively.

We require one further property of -9 to apply Proposition

1.5 (Trotter-Kato). We must show

(2.7) ( -.k A 0I)- = Z for some X0 > 0.

First observe that k - X01 is invertible for X0 > 0, since -k

generates a contraction semigroup on Z, and further that "k k

when restricted to Dom(-k). Then since o'c Dom(9k) '

k k.- -
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(_ak X 1o)  "(k - X01 )-9"

In fact, we show that ([ - 0I)9 =9 and the result (2.7)k 0

follows from the denseness of -9 in Z.

Lemma 2.19. (V - 0 I)L =9 for some X0 > 0.

Proof: a) Oi - X0 I
) 9c- is trivial.

b) (;Vk - X0 I) 9 -: Since (-Wk - XOI) exists, it

suffices to show that for a typical basis element this holds. We

do the typical basis elements yl,j and Y2,j separately. We

show that

i) there exists a z = (zl,Z 2) E £ such that

k A 0
I )z - Y2,= (%j)"

This holds iff ( I - A 0
I )z = Y2,j

ff -Xozl + z2 = 0
-aD4Zl - 6D4 z2 z- X

iff -aD4z - SA D4 z - 2 J.

1 0 1 01

iff -(a + 6X0 )D
4  X2 A

with z= aj, since D4cj = j j > 1, this can be solved iff

2
a(-(a + 6XO)I j - 0 ) = 1, or,

1
a 

(a +

Since all quantities are positive, this can always be solved.

For the other typical basis element yi),j , we must show

that
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ii) there exists a z = (zl,:,) E - such that

( 1- 01)Z = 2 which holds

iff -1  0oI)z = 2

i f .loz1 + z2  = I*j
iff 4i

-aD4 z D - D 4Z 2 A 0z2 = 0;

iff (+6x0)D 4  I Xz = 6D4 j X+ 0

with z= aij, this can be solved for (zl,: 2 ) E (using

D4

iff -(CL + 6 X0 )v ja - X a = 6 "0'

or
6i. + A0

(C +6A 0 )'j  + 0

Since all quantities in the denominator are positive, this solu-

tion is possible (a finite) for any X 0 > 0. a

Thus for each R = 1,2, or 3 we have a set - such that

-c Dom( 4k ) c Dom(-Y) c Z,

where all inclusions are dense, and

(-Wk" A0 I)9 = (-Vk - A0I)L = Z

for any 0 > 0.

We can summarize the previous results. The operators -k

k = 1,2,3 defined in H (a) x H with Dom(k) =H H
H k k x k

have a maximal dissipative extension _k on Dom(jk) where

Dom(-QCk) c Dom( 'k) c Z densely. Furthermore, for each operator

l4
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-k' k = 1,2,3, there exists a set .2 consisting of smooth func-

tions such that j= Z and ( k "1)- = 2.

We now consider the approximate problem. Define for each

k, k = 1,2,3, the spaces Z and 7 by

ZN SAN) X S(N Z= Z~)= Z~ = H2 ()xH0

(recall a = ql), and let P N(q) be the orthogonal projection

P N(q): Z Z 2. The approximate problem corresponds to solu-

tions of

N Nz(t) = a' (q)zN(t) + FN(q,t)

zN(0) = z (q)

where AN(q) = pN(q)_(q)pN(q), FN(qt) = PN(q)F(q,t), and
N pN

z0 (q) = p (q)z0 (q).

We give a concrete realization of these approximating equa-

tions at the end of this section, along with numerical results in

Section 4. Our first goal is to prove convergence of qN >_ q

in the context of Chapter 1. That is, we prove that solutions of

the approximate identification problem (IDN) converge to solutions

of the full identification problem (IDA), using Proposition 1.4.

We first prove the approximating subspaces converge in the

appropriate sense.

Lemma 2.20. Assuming (HQ), the projections P N(q) converge

strongly to the identity I in Z as N - -, for k = 1 or 2.

Proof: Let z = (zl,z 2) E- where -9 is the dense subset

in Z defined in Lemma 2.19 for k = 1,2 respectively. Then

N (q)z E(zN zN (PNzPN z where PN is the projection of
Sz2 3 ( 22), e 3
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the first coordinate onto S (AN) in the 2,a norm and P2

is the projection of the second coordinate in the 1.10  norm.

Then,

N 2 2 2 2[pN(q)z-zI 2  Ip~zl-Zli2 , + P~z2-z2I 0

14 6 2 - 16 6< ( V' K 3 0 (1ID z10 )
2 + (Va K 2 0 (6) ID zf 0 ),

where we have applied Lemmas 1.18 and 1.19, which implies

NN
lPN(q)z-zI - 0 as N - for z E 2. But since .2 is dense in

and the projections PN (q) are bounded operators, it follows

that P N(q)z-zl -- 0 for any z E Z. 0

We may now state and prove the main theorem of this section.

Theorem 2.21. Let (HK) hold. Then the semigroups T(t;q)
N N

and TN (t;q) generated by Vk(q) and k(q) respectively,

k = 1 or 2, satisfy UIT(t;q) Jl < 1 and 11TN(t;q) 11 < 1. More-

over, for any sequence {q N} converging to q* in Q, we have

IT N(t;qN )z - T(t;q*)zJ - 0 uniforhiy on [0,T]

for each z E Z.

Proof: The bound fT(t;q)ll< 1 follows because JiWk gen-

erates a C0  semigroup of contractions on Z. Also by the re-

marks in Chapter 1, Section 1, it follows that ]_TN(t;q)II < 1. To

establish the convergence results, we apply the Trotter-Kato

theorem (Proposition 1.5). Let = Z(q*), N = z N(qN); also

take -Q(= -Q (q*) and _Q( N N(qN). Let r : Z(q*) -: Z(qN)

Nbe the cononical isomorphism between Z(q*) and Z(qN). Then
N qN

q -- q* implies I zi --- IzI, verifying hypothesis i) of

Trotter-Kato. Thus it remains to verify iii). We have already

..... ....... ...
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defined for each k a set O such that ( k(q*) -I)?_ is

dense in . To establish convergence, we see that for each

z = (zl,z 2) E9 (suppressing the notation vN)

(2.8) L NN)z - '/(q*)zl = pN(qN) -P(qN)pN(qN) - ((q*)z

< I (- k(qN) N Cf(q*))P N(q N)zI

+ I_(q*)(P N(qN)z-z) + I(PN (qN)-I) (q* z I

We bound each of these terms separately.

The second term can be written explicitly as

-Q/(q*)(PN(qN)Zz) 0 :4 1 (pN(qN)z-z)

1 2  1
N

-q*D4 (zl-zl) q* D4 (z-z 2 )

N N N N N N N N N Nwhere P (q (z z2) and z= P3Zl z2 P 2z where P3, P2

are the projection operators of Lemmas 1.19 and 1.18. Thus,
2 N2= 2

I A (q*)(P N(q N)z-z)f2 =zNz 2l2 ,q* 4(Z N_ z+q*D4 N
2Z 22 ,q* + 1q 2(z2-z 20

< _ z - 2 ,q fq*ID 4  1zN-z )10

+ 2 ID 4 N 2)10}2
2 _ D6Z 12 + q K (_1)2 D Z

< q* K 2 (1) 8 1D 2 I 0  {q* K3 2 I D zl0

*+ II K, 4 (1) 2ID 6 z2 0 } 2,

by an application of Lemmas 1.18 and 1.19. Thus,

I Q((q*)(P (q )z-z)I 10 as N
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pNq
For the last term in (2.8), we have pN(q) - I strongly

on Z. Convergence of the first term follows once we write out

explicitly

N N N 0 1
(_ (qN) _ . (q,))pN(q )z [= (~q)~~- q-~Dz

(q q*D , (q2 -q2 )  zN

D4 N D and D4  D 0
and note that D z N zI  z D z in H and

1 1 2 Dq N q* Thus Trotter-Kato (Prop. 1.5) yields convergence of the

semigroups ITN(t;qN )z - T(t;q*)zf - 0 uniformly on [0,T] for

each z E Z. 0

Remark. Note the role that the dense subsets - played in

the proof, in addition to possessing the required smoothness to

apply Lemmas 1.18 and 1.19. Since -c Dom(_V.) c Dom( ), we

were able to use the form of -. explicitly in the proof since

- . restricted to Dom(-1.) is -. itself. Thus the Trotter-1 Dm.)1

Kato approach does not require that we know J. explicitly.

A Cirect application of Proposition 1.4 along with the com-

pactness assumption (HQ) yields convergence of a subsequence of

the solutions q of the approximate identification problem to a

solution q of the original identification problem (IDA).

The case where y > 0 in (2.2) follows easily from pertur-

bation theory. In this case -SIj in (2.5) becomes
k

k -aD 4  6D 4_y

Consider = B, where 1 as before,
k k -aD4 -6) 4
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and -k is its maximal dissipative extension, and B = -

is a bounded perturbation of Wk, since JBzJ < ylz for

every z = (Zlz 2) E Z. So standard perturbation results [18,

p. 33] imply that -k generates a CO  semigroup on Z. It is

easily verified that (k - XI)9= . The proof of Theorem 2.21

remains essentially unchanged by the inclusion of this new term.

We now turn to a concrete realization of the approximate

identification problem. Let B. be the quintic B-spline satis-

fying the appropriate boundary conditions, as defined in (1.16)-

(1.18), and recall that {B} N  are a basis for SS(AN As aai=O k

basis for ZN S"Nk ) Sk(A ). then we take { i}N+l where

SN T, ~ !
N (Bi,0) 0 < i N

1 (,BN )T N+l < i < 2N+l
S(N+l)

Our approximating equation

zN(t) = NzN (t) + pNF(t)

is then defined by QN = pN QP N (with F = (0 ,f)T), where PN

is the orthogonal projection of Z onto ZN. To obtain a reali-

zation of this method, we seek a zN (t) E ZN satisfying

j N N N N(t) -sN z (t) - P F(t), > = 0 for all E E Z

Since z N(t) and C E ZN, they have representations zN(t) =

w N(t) and = LV.ii" The condition above thus reduces to

<1 k (t) ON I wNQeaN - F, =

for i = 0,1,...,2N+l, which in turn is equivalent to the vector

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _i..'- ~ -. ~
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system of ordinary differential equations

QN N(t )  K NwN(t ) + R NF(t)

(2.9) NN RNP

where wN (t) =(wN (t) N (t)) N _- N a N, K N

0 2 Kij

N N N N
(R i, = <%NF>, and T = (4,p) is the vector of ini-

tial conditions in (2.4). For the examples under consideration

(as well as others presented below), the matrix structure in the

I approximating equations facilitate computations. In particular,

one finds

N N
QN N N0

S0 Q2N

w'here (QN)ij = a<D2BND 2BNB > (QN) <BN,BB N> andPi it 0' ij j0

N 0 KN

K _ 1
N N NNK2  3

with K1 - Q1, (K)2 = <-aD 4 B N =B>0 = 12ijj0 Q i j  n

4N B N> N N< B N> f(Q )ij, where one
3 ij 1 j 1 j>O a 1i 2

uses integration by parts and the boundary conditions to establish

these identities. Thus the equation in (2.9) reduces to

~N N N N
(2.10) wN(t) = G w (t) + F (t)

where N0 1
GN - (QN)- QN - (Q N-1 QN -

a d a 2 1

and
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FN = (QN) -RNF = (QN) lfN

with f= <f,BN j = 0,1,...,N.J .j>O,' ~l..Y

The approximate displacement y N(t,x), used in the cost func-

tional J, is given by

N

yN (* ZN N N (tBN
i=O1 °I i=0 i i

The matrices QN and QN have a banded structure and can be used

efficiently in solving (2.10). More will be said about this in

Chapter 4.

Section 3. An Approximation Using Cubic Splines

In Section 2, we solved the approximate identification prob-

lem (IDA) using state approximations based upon quintic splines.

In this section, we lower the smoothness requirement for the

basis elements by rewriting (2.2) as an abstract equation which

permits the use of cubic splines. To do this, we consider here

only the case where 6 and y are zero (no damping), with bound-

ary conditions of type 1, corresponding to a simply supported

beam. Then we may rewrite (2.2) as an abstract equation in

Z = H0 x H0 x H0  of the form

±(t) = .€(q) z(t) + F(qt), t > 0,
(2.11)

z(0) =z

where z(t) = (zl(t),z 2 (t),z 3 (t)) (y(t,.),yt(t,.),Yxx(t,.)) ,

z= and

.. ... . . . . . . . . . . .. iii l ll .. . .
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0 1 0

Q'(q) = 0 0 D 2

0 , D2  0

0 2 1 2 1
on Dom( a(q)) = H x H n H 0x H n H . Here q a.

We first wish to prove that .'(q) generates a C0  semigroup

on Z. The following lemmas will do this, starting with dissi-

pativeness of -.Q(q).

Lemma 2.22. (-Q./(q) - wI) is dissipative for w sufficiently

large.

Proof: Let v = (vl,v 2 ,V3 ) E Dom(-'(q)). Then,

<(sW(q)-wI)v,v> = <vv>+ < -/a-- D2  V>+<a-D 2 V>= <vvl> + < Dv 3 ,v2 > + </ D v2 ,v3>0

-<w(vlI q) -v2I- vIv>

~L v~~IvI~- wlIO wlv2I0 w)v31

20103 2 2)0

2 2
<v2 ,vl>0 + 2v 3Jv v o

2 2 12 2

< 1 2 1 2 2

210)v 1 0  ( - w)lv 2 10  wlv 3 10

< 0 for w > 1/2.

To establish that -W(q) is a generator of a C0  semigroup, we

will show that sQ((q) is closed and R( Q(q) - XI) = Z. For

simplicity, we first partition the operator -V(q) as
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0 1 0

0 B(q)

where

0D
B(q) = [ D2  0

on Dom(B(q)) H, and derive some results for
onDo(Bq) - 2 n 0 H 0 H,

B(q) which will be used to show that -'(q) is a generator of a

CO semigroup.

Lemma 2.23. B(q) is a dissipative, skew-adjoint operator

0 0and generates a C0  semigroup of contractions on Y = H x H

Proof: Dissipativeness follows easily from an integration

by parts. Let v = (v1 ,v2 ) E Dom(B(q)); then, <B(q)v,v>--

D D2V2V > 0 + </a D2V ,V2 >0 = 0.

It is easily verified that -B(q) is adjoint to B(q)

(B* = -B):

<B(q)v,w> - <v 2 -B(q)w> = <-/a D2v 2' w >0 + <V? D2VlW2>0

-~ 2Vr Dw>0 <V2-a D2Wl>

1'Y~ 2 0 2'-/a 1 0

= 0 for all w = (wl ,w2) E Dom(B(q)).

We show B* c -B. Let g = (g1 ,g2 ) E Dom(B(q)*), f = (fl,f 2 )

B(q)*g. We show f = -B(q)g and g E Dom(B(q)). We have

<v,f> = <v,B(q)*g> = <B(q)v,g> for every v E Dom(B(q)),

or,

f -vf + v2 f2 + j. (D2v - g(D2
1 )g 2  0

0 0 0
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for every v E Dom(B(q)). Let h1 (x) ff1  fl(s)dsds10

flfsi fl(s)dsdsl and h2 (x) fxf f2 (s)dsds -x 00 0 0 0

x flfslI f(s)dsds,. Then integrating the terms in the above equa-
;0 0 2

tion by parts yields

f(D v )h + J(D v )h + f v'(D v )g1 - f Va-(D vf)g2 1 00 1 o 22 0 2 0 )2=01
where we have applied the conditions vl,v 2 E H 2 n H 0  and

hi(0) = hi(l) = 0, for i = 1,2. Thus we obtain the pair of equa-

tions

I(D 2vl)(h 1 -/g 2) = 0

and

f (D2v2 )(h2 + "a-gl) = 0.
0

Thus g2  h Dg - 1 Dh D2g f E H0  implies g2 E 
H2

1'sg2 / / 2 € 1

and g2 (0) hl (0) = 0, 92(l) hl(l) = 0 implies
2 12 1 D2

H Similarly, we obtain g, E H 2 n H andD
92H2 NH 0 ' ,0g

-. f2 and so (fl,f)T = B(q)*g = 2 D - rD 2g)T = -B(q)g.
1 2 2 1

Therefore, B(q) is skew-adjoint. Since <B(q)*v,v> =

<-B(q)v,v> = 0, B(q) is maximal dissipative [25, p. 87], and so it

generates a C0  semigroup of contractions on Y [25, p. 88]. a

We may now state and prove the result for -QV:

Lemma 2.24. .W(q) is the generator of a C0  semigroup

0 0 0T(t;q) on Z = H x H x H

Proof: Let z = (z1 ,z2 ,z3 ) E Dom((/(q)). Since B(q) gen-

erates a semigroup on H0 x H 0 , we have [25 , p. 87] R(B(q)- I) =

H0 x H0 for any X > 0 and B(q) is a closed operator. But
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since

(. f(q ) - X I ) z = ( B ( q ) -I ) ( 2 )

3)
R(B(q) - Xl) = 0 x H0 implies that given f2,f3 E H0, there

2' 3 f

exists z2 ,z3 E Dom(B(q)) such that (B(q) - Alz2) 2)
2 1 3(

then, given fl E H Zl = (z2 - f1 ) E H" and z solves

(-Q/(q) - XI)z = f, f = (f1 ,f2,f 3), which implies R(JW(q)-XI) = Z.

Also the fact that B(q) is a closed operator yields immediately

that _;/(q) is a closed operator, and these two conditions along

with the dissipativeness of Q(q) - wI are sufficient [25, pp. 87-

88] to ensure that W(q) generates a C semigroup on Z. a
0

We again require a dense subset of smooth functions

c Dom(Q'(c). Note that for q.(x) = /T sin(j7rx), {¢j forms

a complete orthonormal set for H0 . Define Y = 0

0 0 0j

Y2,j = % , and Y 3 ,j 0 . Then define
0 cj

NN N N an
= span{Yl,j} I 1 U span{Y2 ,j}j 1 U span{y3,j }jl and

U _N then = Z. For A > 0, it is easily verified that
N=1

(AI -;(q))g =9, and so (AI - _,(q))9 = Z.

For the approximate identification problem, define

zN = S3(A N) x S3 (AN) x S3(AN), and let PN be the orthogonal pro-

N N
jection pN: Z --- Z In this case, for z = (z1 ,z2,z 3 ) E Z,

= N where PN is the orthogonal projection of
0  t S N

H0 onto SO(AN) The approximate identification problem then
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corresponds to solutions of

N

(t) = (q) z (t) + PNF(q t) t > 0
(2.12) N 

1
where _eN (q) = pN ,(q)PN and zN = PNz

0 0

We defer obtaining a concrete realization of this problem to

the end of this section, after we have proved convergence of a

subsequence of the solutions qN of the approximate identifica-

tion problem converge to a solution [ of the original identifi-

cation problem.

Lemma 2.25. Assuming (HQ), the projections PN converge

strongly to the identity I in Z.

Proof: Let (z, 2 $z3 ) E 9, where - is the dense subset

-9c Dom(. i(q)) a Z as defined above. Then, PNz = (P NZ1(0z1
N N N N ) N is the 1'10-projection ofP0z2,P0z3) (zlZ 2 ,Z3 ), where P0  0

onto S,(AN). Then,

N 2 N 2IP z-zI = [ IPozi-zij o

i=l

- i= N, i 1 2 by Lemma 1.5.

Therefore PN o I on - , and the boundedness of the projection

operator implies, since = Z, that PN o I strongly on Z. o

We now state and prove the convergence result for cubic spline

approximations.

Theorem 2.26. Let (HQ) hold. Then the semigroups T(t;q)

and TN (t;q) generated by m(q) and ,N (q) satisfy

JIT(t;q) 11 _ Me't and IITN(t;q) 11 < Me'~t Moreover, for any

LL- Aft
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sequence {q N converging to q* in Q, we have

IT N(t;qN )z - T(t;q*)z[ - 0 uniformly on [0,T]

for each z E Z.

Proof: The bound I[T(t;q)[I Me' follows because 1(q)

generates a C0  semigroup on Z [31, p. 10]. Since

<_4N(q)z,z> = <C((q)PNz,PNz> = WIPNzI < wjzi, by the dissipative-

ness of -d- wI, for w sufficiently large, we obtain

IT N (t;q)J < Mewt .

We refer again to the Trotter-Kato theorem (Proposition 1.5)
• N =ZN' N

to establish convergence. Let q= Z, N= , and take iT

to be the identity. All that remains to be verified is condi-

tion (iii) of Trotter-Kato.

Taking - as above, we see that for each z = (zl,z 2,Z) E ,

IIN (q N) z- Q((q*) z = IP N -(q N)pN z - cV(q*) z

<N N ;V NNVq)PNZ

(2.13) N

+ Ia(q*) (PNz-z) I + 1(pm-I)_9(q*)z I

We bound each of the terms above. The second term may be written

explicitly as

0 1 0

_ ¢(q*)(PNz-z) = 0 0 -¢q D2  (PNz - z)

0 /aD' 0

2 D 2

z - z2 )-D
2 N-Va (z 3- z3)
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where a and zN N z i = 1,2,3. Thus,
1 0i

I q, pNz ) 2 IZN-z 22 aI 2 N_ z 12 + cID 2 (z N _ 2 ,2
2= (P+ + 3)3 0 1 1 0'

which implies, by Lemma 1.15,

S-K(q*)(PNz-z)12 < K0, 0 (-!)4IDz 2 0]2 + a K0 2 ()2 ID4z3 02

+ IK 0 2 (1)2 ID4z2 10

and so I -2(q*)(P Nz-z)I - 0 as N

For the last term of (2.13), we have PN I I strongly on

Z. Convergence of the first term follows explicitly from the

form of iQ(q):

0

( ,(qN)_ (q*))p z = -(-ql - q z)D~z3 N
1 -1 2

2N 2
Convergence follows since D2 z2 -:0 D 2  and D2zN _ 2 z3

in H0 , and by hypothesis qN __ q*

This theorem, together with Proposition 1.4, is sufficient

to ensure that

lim~qN-q*[ = 0 implies limizN(t;qN)-z(t;q*)i = 0.
N -  N -

We now turn to a concrete realization of the approximate prob-

lem using cubic splines. Let {C.} be the cubic splines defined
1

in (1.15) which span S3(A N). The approximation subspace ZN  is
S3(AN ) x S0(A x SO(AN). We follow the procedure outlined at the

end of Section 2 where we obtained a concrete realization using

L4~
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quintic splines.

We form projections PN: Z Z ZN and seek approximate solu-

tions of the form zN (t) N N (t) N where N E ZN is given
i=0 i i i

by

(CN,O,O)T i = 0,...,N,

N CN T
Nl ),0) i = N+I,. .,2N+I,' i-(N+l) ' '

(, ,N )T
(OiOC(2N+2) i = 2N+2,...,3N+2.

We are thus led to a system of 3N+3 differential equations for

Nthe wi  (compare with the 2N+2 system in the quintic formula-

tion!)

(2.14) Ik N (t) GNw N(t) + F Nt)

where

0 i 0

GN = 0 0 -a(A N) A1

0 (AN) 1 AN 0

with

(Ai <cN 'c N>0 (A). = <DC NDC >O' F (Q N) R F2 i jO ' 1 ,3 1

N N N
(QN) = diag(A A 2 A 2 )

and

N N 0 0 < i < N, 2N+2 < i < 3N+2

i <f,Ci_(N+l)>2 N+1 < i < 2N+I.

Finally, we present an approximate method using cubic splines

in the case where structural damping is included. While the con-

vergence proof falls outside the framework above, we present

numerical results in Section 4 which demonstrate the effectiveness
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of this method. We next consider (2.2) with y = 0, a > 0, 6 > 0

and boundary conditions of type 1 (simply supported). The initial

conditions are the same as above. Equation (2.2) is rewritten as

2

6D 2 A + = -aD 2U

I= D2v

T T 0 0 0
so that for z = (y,v,u) = (y,ytyxx) in Z = H x H x H 0 , we

obtain the abstract equation

ri(t) = ."z(t)(2.15)
z(0) = (€,¢¢,)T

Here _Q is given by

0 1 0

; 0 0 -aD 2

0 D2  0

2 1 x( 2  1 2 1 an
on Dom( )= (H n H ) x (H n H0 ) x (H n H0 ), and

1 0 0

r = 0 1 6D2

0 0 1

Note that only if 6 = 0 (no structural damping) does this reduce

to the form (2.11) and fall within the framework of the theory out-

lined for (2.11) and (2.12). Nonetheless, the general ideas dis-

cussed above lead to efficient computational schemes for (2.11).

Taking ZN = S3(A N ) x S3(AN) x S3( N) and PN the orthogonal

projection of Z onto ZN, we define QN N and

rN - pN~pN and use
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(2.16) r NN (t) - ,Nz N(t)

as the approximating equation for (2.14).

Section 4. Numerical Results

We provide a few examples of numerical experiments illustra-

ting the methods presented in this chapter. Many examples have

already been reported in [ 61 which compare the method based upon

quintic splines to the method based upon cubic splines for the

Euler-Bernoulli equation with structural damping. Included were

examples with time-dependent boundary conditions which were trans-

formed to homogeneous boundary conditions. We refer the inter-

ested reader to those examples and do not repeat them here.

We provide some new examples not included in [ 61. The

first example concerns a simply supported beam with both struc-

tural and viscous damping. The others illustrate the convergence

properties for the important case of the cantilever beam. All

of these examples use the quintic spline approximation.

The numerical experiments consisted of taking as data the

values of a solution of a model equation of the form (2.1) whose

parameters were known and then seeking a solution q of the

approximate identification problem for different values of N.

The "data" {y. i., i = 1,...,r; j = 1,...,Q were generated by

solving (2.1) approximately by a Crank-Nicolson scheme and using

yjj = y(ti.x.) as the observations or input to the approximate
ij1 J

identification packages. For the experiments listed below, we

used k = 3, r = 10 and generated the "observations" at

x = j/4, j = 1,...,3 for times ti  = i/l0, i = 1,...,i0.

SO1
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The optimization algorithm (see Chapter 4) requires an ini-

tial guess for the parameters; these are referred to as the

"start up" values in the tables. The values to which the optimi-

zation algorithm converged for a fixed N are denoted by -N

and J(q N) denotes the cost functional evaluated at qN

Example 2.1. We consider an example where we hace included

both structural and viscous damping in the model. We consider

the r:olel equation

1tt - -xxxxtqy 3y t + Sin t

\(0,x) = yt (O,x) = 0

v(t,O) = V x(t,O) = y(t,1) - yx(tl) = 0

Table 2.1 summarizes the results for the parameter estimation

problem for this equation using the quintic spline approximation.

Table 2.1

N N N N
N q1  q2  q3  J(q )

2 .999938 .009875 .032420 .2001 x 10

3 .999940 .009974 .022713 .8231 x 10 - 7

4 .999936 .010004 .019860 .3324 x 10- 7

TRUE VALUE 1.0 .01 .02

START UP .65 .005 .005

Example 2.2. Next we consider an example for a cantilevered

beam. With ¢(x) = sin ax - sinh ax + K(cosh ax - cos ax) where

K = (sin a + sinh a)/(cos a + cosh a) and a = 7.8547 (corres-

ponding to the third mode for an undamped cantilevered beam), we
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consider the equation

tt= qlyxxxx- q2Yxxxxt

y(0,x) = O(x), yt(O,x) = 0

y(t,0) = Yx (t,0) = Yxx(t,l) y xxx(t,l) 0.

The numerical results are summarized in Table 2.2.

Table 2.2

N -N -N qN

2 .3821 .0067 .025 x 10-1

3 .4960 .0098 .735 x 10- 4

4 .4996 .010020 .116 x 10-6

6 .4997 .009995 .768 x 10 - 7

TRUE VALUE .5 .01

START UP .35 .005

Example 2.3. A second example for a cantilevered bean is

provided for the model equation

Ytt M -qlyxxxx - q2yxxxxt + qlO exp[-20(1-x)lexp[-qgtI, t > 0

y(0,x) = yt(O,x) = 0

y(t,0) = Yx(t,0) = Yxx (t,l) = Y xxx (t,l) = 0.

Table 2.3 summarizes the results for the estimation problem corres-

ponding to this equation using the quintic spline approximation.
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Table 2.3

N N N N
Nq q2 q9 q1 0  J(q

2 .497863 .009923 2.02101 10.0458 .110 x i0 - 5

3 .498527 .009995 2.01284 10.0255 .693 x I0-7

4 .499284 .009996 2.00602 10.0143 .449 x i0-8

8 .499775 .009982 2.00183 10.0075 .356 x 10- 9

TRUE VALUE .5 .01 2.0 10.

START UP .35 .005 1.5 8.0

When q9  and ql0  were treated as knowm values and optimization

was performed for q1  and q2 only, the following results were

obtained.

Table 2.4

NqN qN JqN
N q1  2 ~q

2 .500394 .009445 .146 x 10-5

3 .500045 .009763 .141 x 10-6

4 .500006 .009817 .340 x 10- 7

TRUE VALUE .5 .01

START UP .35 .005

We note that in all of the examples considered for the Euler-

Bernoulli equation rapid convergence of qN to the true valued

occurred.

Fo the optimization algorithm (see Chapter 4), we specified

small convergence tolerances to obtain best possible results.

For a typical problem, convergence was obtained in 3-5 iterations

7 7. .7 '"° '
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of the Levenberg-Marquardt algorithm.

A variable step/variable order method (DGEAR) was used to

integrate the approximating system of ordinary differential equa-

tions. For example 2.2 with a requested local error tolerance

of 1. x 10-6, DGEAR took 211 steps (last stepsize was .018) and

used fifth order methods to integrate the system when stiff

methods were used. By comparison, when non-stiff methods were

chosen, it took 5766 step (last stepsize was .213 x 10 - 3 ) to

achieve the same local error and it primarily used order 2

methods, indicating a moderate degree of stiffness due to the

damping term.

As was the case with the second order equations considered

in [ 7], the PN'p approximations for linear constant coeffici-

ent problems were extremely accurate, even for small N. It is

expected that the power of these approximations will be more im-

portant for other problems to be considered in the future,

particularly the case of spatially varying coefficients.
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CHAPTER 3. APPLICATION TO THE TIMOSHENKO EQUATION

Section 1. The Timoshenko Equation

The second example of the application of these techniques

that we wish to consider is the identification problem associated

with the Timoshenko equations for transverse vibrations of beams.

The Timoshenko theory extends the Euler-Bernoulli theory by tak-

ing into account the effects of rotary intertia and shear dis-

tortion. These effects play a significant role when the depth

of the beam is large when compared to its span and when high fre-

quency oscillations must be considered.

While the Timoshenko formulation may be written as a single

fourth order partial differential equation, it is easier to

handle boundary conditions when it is written as a system of two

partial differential equations in the transverse displacement

y(t,x) and angle of rotation (t,x) of the beam cross-section

from its original vertical position [14, p. 300]:

= a(yxx - 'x) + f(t,x;q)
(3.1) t > 0, x E [0,1]

i~i c~P + b(y -

tt =  xx x

where a = k'AG/m, b = Aa/', c = EI/m, with A = cross sectional

area of beam, E = Young's modulus, G = shear modulus, I = moment

of inertia, and k' = shear coefficient (cf. [15]), and where

f(t,x;q) is the "load" or applied force.

The initial conditions are
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y(O,x) - Yo(X)

Yt(O,x) = Yl(X)

*(O,x) = VO(X)

*t(O,x) = el(X),

and some of the common boundary conditions are

i) y(t,O) = y(t,1) = *(t,O) = (t,l) = 0

ii) y(tO) = y(t l) = 0(t,0) - (t = 0

iii) y(t,0) = ,(t,0) = t~)l) = 0, tx,l) = t(t,l).

These correspond to the boundary conditions for a beam fixed at

both ends (i), a simple supported beam (ii), and a cantilevered

beam (iii), comparable to the boundary conditions of type k

for the Euler-Bernoulli equation (cf. [13, p. 97]).

For the ease of exposition, we shall limit our discussion

to boundary conditions (i), although the theory is generally

applicable to all three.

Section 2. An Approximation Using Cubic Splines

Following again the approach outlined in Chapter 1, we write

(3.1) as an abstract equation

I(t) = .. (q)z(t) + F(q,t)
(3.2) z(o) = zo(q)

in a Hilbert space Z, where q, = a, q2 = b, q3 = c, and

q49...,qp are parameters in the load term F and initial func-

tion z0.
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Again, there are many choices of (3.2) and the space Z

which lead to well-posed problems. The forms that we choose for

(3.2) lead to specific state approximations. We shall discuss

two such possibilities and discuss the approximate identification

problem of the first in detail.

The first such choice of the abstract equation will be

T(3.2) with z(t) = (zl(t),z 2 (t),z 3 (t),z 4 (t)) = (y(t,.),Yt(t).),

(t,.) , t(t,.)), in Z = V(a) x H x V(c) x H0 , and with

0 1 0 0
2aD 0 -aD 0

(3.3) "C'(q) = 0 0 0 1

bD 0 cD2 b 0
o2  1 1 2 1x where 1

on Dom(A() H n H 0 H0  H 0 H, =V(a) H0 (a)

equipped with the inner product <u,V>v(a) = <uv>, <aDuDv>0 "

We denote the corresponding norm on V(a) as ' 1 ,a, and take

TF(q,t) = (0,f(t,-;q),0,0)

Theorem 3.1. The operator -Q'(q) defined by (3.3) with

ql = a, q 2 = b, q3 = c is the generator of C0  semigroup

T(t;q) on Z satisfying IIT(t;q) l< e't  for some w > 0.

Proof: Define the operator on Z by

0

0 1 0 0

J0q) aD 2  0 0 0 = B 0

0 0 0 02 1 0 B2

0 0 cD 0

0 1 =2 1 1
where B =  2 on Dom(Bl) H n H0 x H0  and

B2 CD 2  1 on Dom(B 2) = H2 n H0 x H0. B1  and B2 are

C 0
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the wave operators considered in [7, p. 29], where they were

shown to be generators of C0  semigroups of contractions in

V(qi) x H0  for i = 1 and i = 3 respectively. Thus -0 is0
the generator of a C0  semigroup of contractions T0 (t;q) in
Z, 0-Q is maximal. dissipative, and IT0(t;q) ll< 1.

00

Now we apply perturbations results to obtain the conclusion

of the theorem. We first show that - is a bounded perturbation

of the operator -0" Note that -Qe= 0 +-Q where
0 0

0 0 0 0

0 0 -aD 0

0 0 0 0

bD 0 -b 0

IezI = I-aDz 3 10 + IbDz1 - bz3 10

< IaDz31 0 + IbDzlI 0 + 1bz 010

SIz 311,c +a ll,a + b z3 0 , by definition of Z,

<+ b la+ bbiDz 3 0, by the Rayleigh-Ritz
a Z311,c + l,a + 0' inequality,

= c +zLI
lI c b 1 [1a b z31 l,c

a 1'lc a 111l,a + T ZIl

Kz + K2zi , where K b andKlll,a 231,c' 1=

K c+ b
2 a nc

< K3 [z[ with K3 = max(Kl,K2).

Thus .Qe is a bounded perturbation of -V0 and we can apply the

0'
perturbation results of [31, p. 80] to infer that generates

a C0  semigroup on Z, satisfying

[[T(t;q)[ < e[[_s t = e K 3t
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Corollary 3.2. The operator ( '- wI) is dissipative for

all w sufficiently large.

Proof: Let z E Dom('). Then

<= <(-Qr + Qe)z,z>

= < Yz> + <-Sz'Z>

< <.-Szz>, since QN' is dissipative,
0

< 1L-'z I Iz I

< K3 z 2 by the boundedness of .W.

Thus <(u- wI)z,z> < 0 for all w > K3 •

The proof of the above theorem is interesting in that it

states that the Timoshenko equations can be viewed as a pertur-

bation of i-wo simple wave equations. Because of this fact, we

were able to apply the results of ( 7) where the wave equation

involving an operator of the form B1  was treated.

Corollary 3.3. Let S= Dom(-&) n (Hm x H
m x Hm x H m),

m > 3. Then ( X'- oI)9_ = Z for some X0 sufficiently large.

Proof: Since -V generates a C0  semigroup on Z,

R(-V- X0 I) = Z for X0 sufficiently large. So for such X

in tho resolvent set p(-W), -Q(- X01 is invertible.

Consider Y c Z. Y = (HM x Hm -2 x Hm x Hm -2 ) n Z. Clearly

X 01 is invertible on Y, so take f = (flf 2, f3,f4) E Y.

We show there exists a z E 9 such that

(3.4) (-f- 0 l)z = f.

We know by the invertibility of Q'- X01 that there exists a
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=1 2 1 1 2 1z E Dom(&) H0 n H x H x H1 H H such that (3.4) holds.
Do(2! = H0 HxH0 H0 H0

We need only show z E. But,

-X0z1 + z2

A0 )z A-0z 2 + aD2 zl aDz 3-A¢ 0I0 z =

-A z + bDz +cD 2z z
0 4 1 3 3

So, ( - 01)z = f if and only if

(i) -X 0z + z2 = f

0 -A0z2 aD1 - aDz3 = f2

(iii) -A 0z3 + z4 = f

(iv) -A 0 z4 + bDz1 + cD 2 z3 - cz 3 = 4"

First consider m = 3. Then, f E Y = (H3 x 1 x H3 x H ) n Z

implies f2 E H , and z E Dom(_Qe) implies z2 E H01

2 1) O
z E H 2  H1 (hence Dz3 E HI). So g z aDz 3 + X z + f E Iil

02 2
and (ii) implies D2 Zl = g/a E H and z1 E H3 . Then (i) im

plies z H . Similarly, f E Y implies f E H  and2 1 1z E Dom(.') implies zI E H 1 E 1 and so g z

bDz + cz + f4 ) E HI and so D2z= g/c E H which implies

z3 E H
3. And then (iii) implies z4 E H

3 .

Next consider m = 4. We have z E (H3 x H 3 x H 3 x H 3) n

4 2 4 2Dom(g) from above, and we assume f E (H x H x H x H2) n Z.

Repeating the arguments in the last paragraph yields D E2z E H2

which implies z1 E H
4  and z2 E H

4  (from (i)). Likewise,

D2z3 E H2 implies z3 E H4 and z2 E H4 .
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A simple induction argument yields the result for arbitrary

m. [Note: we actually only use m = 4]. So, (-V€- A0I)g= Y,

and (W - X 0I) = Y = Z since Hm is dense in HM- ,

j = l,...,m,.

We may now discuss the state approximations which we use to

solv the approximate identification problem. We take

zN S (ANA S S0(AN ) x S (A), where we recall that

3N NS0 (A )  is the set of cubic splines s(x) with knots on AN

satisfying s(O) = s(1) = 0. Define PI(a) the projection

P N(a): V(a)- s3 (AN) in the L.la norm, and P to beN 0

the projection P0 : H - -S (AN) in the H0 norm. Then it

follows immediately from Lemmas 1.15 and 1.16 that with PN

defined as the projection PN: Z - ZN given by PNz =

NP~ N pN N
(PZ 1 ,P0 z2 , P Z3 ,P0 z4), that (see also [ 7, p. 33]) the following

holds.

Lemma 3.4. pN I I strongly on Z.

With ZN and PN defined as above, we solve the approximate

identification problem associated with

N zN FN(t) =' N(q) (t) + F (q,t), t > 0
(3.4) N PNz

z (0) p= z
0

in ZN , where again we take

S_W ,N = pN VpN,

FN = pNF.

NThe operator Q, (q) defined on the finite dimensional sub-

N.
spaces Z is a bounded operator for each N and hence generates



84

a C0 -semigroup TN (t;q) Ne (q)t on Z. By Theorem 3.1, W1(q)

is the generator of a C0  semigroup satisfying jIT(t;q)[[ ,

so that _g(q) - wI is the generator of a semigroup of contrac-

tions and is maximal dissipative 125, p. 90]. Thus by the re-

Nmarks in Chapter 1, Section 2, V, (q) - wI generates a C0  semi-

group of contractions, or 9N(q) generates a C0  semigroup

TN(t;q) satisfying J[TN(t;q) e t .

We can now state and prove the convergence result that the

solutions of the approximate identification problem using state

approximations (3.4) converge to the solution of the identifica-

tion problem corresponding to (3.2 - 3.3).

Theorem 3.5. Assume (HQ) holds. Then _a(q) and aN (q)

are generators of C0  semigroups satisfying IfT(t;q)II < e't and

IT N(t;q)ll < ewt for some w > 0. Moreover, for any sequence

{q N converging to q* in Q, we have

T N(t;qN)z - T(t;q*)zI - 0 uniformly on [0,T]

for every z E Z.

Proof: We have already proved the first assertion. We in-

voke the Trotter-Kato -heorem once more to prove convergence.

Let = Z(q*),_ N _ z N(qN), and let N: Z(q*) -- Z(qN) be

the canonical isomorphism between Z(q*) and Z(q N). ThenN N,

--- q* implies I7Nzi -- :o z , so that the first hypothesis

of Trotter-Kato is satisfied. Thus, it remains to verify hypothe-

sis (iii). We have already defined the set L_ such that

( '(q*) - )AI)9 is dense in .

L,
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To prove that the last hypothesis holds, let z = (zl,z 2,

z3 ,z4 ) E 2. Again, we shall suppress the notation 7N and ob-

tain

_ N(qN)z .. (q*)zj = IpN(qN)c(qN)pN(qN) - . €(q*)zj

< I(.Q(qN) - ,(q*))pN(qN)zj

(3.s) ( 3 .5) + I -Z (q * ) ( P N q N z - z ) l

+ J(pN(qN)_,) Q€(q*)z .

We estimate each of these terms separately. The second term in

(3.5) can be written explicitly as

0 1 0 0

S N) z q*D 2  0 -qD 0 N
W(q*)(P(q0 0 0 1 (PN(q )z-z)

q*D 0 q*D 2 -q* 0

N -z -zz 2  2

z N _ z4
4 N4N
q*DzqD (z1-_1) - q*D(zN.

2 ~z- 1 ) 1 *D (Z3 3 3) N

where we have denoted PN(q N)z (Z,z 2 ,N NzN,z N ). Thus,1 2 3D2

[Qeq*)(PN(qN)zz)1 2  = zNz22,q N_ N_ 2

+ +zz4 , 2 + qDzNz)q2(zNz3 )

N_ 2 N 2 N _2 2

*_ IZNz- 2l,q {q*ID (Zl -_Zl)JO0  +  q*IDl N_ 3)I }2
2 21 q + 1 1 11 + 0

* IzN-z 4 11, + lqllD(z Zl) + qID 2 (zN-z 3) 0

+ Jq1 IzN-z 3 1 2

2 1 3 3
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I(K1 ,() D4z 2  + q K 12( ) ID 4 zI 0

1 3 4 0 }2

+ q* K0 2 (1) 2 D4 z3 I 0

+ Iq~I( )4 ,K olDz 3I1 2, by Lemmas 1.15 and 1.16.

Now since q E Q and Q is compact by hypothesis, and since

4 24

ZlZ 2 ,Z3 ,Z4  all are in H4  by the choice of 2, we have

/(q*) (pN(qN)z-z) 12 = 0(1/N2 ) for z ,

guaranteeing convergence of the second term in (3.5).

For the last term in (3.5), we have the convergence of P

to I strongly on Z. Convergence of the first term follows

explicitly from the form of the operator,

0(qN-q*)(D 2 Nz NDzN )

(W(q >- W(q*))PN (q)z 0

(qN_q*)(D2 zN)+(qN_q*) (DzNzN
3 3 2 2 1 3'

since qN ___q, D2zN D2 N 2 N _ 2q I --- D zI, Dz3 -- Dz3, D D

Dz - - zI and zN -- z3 .

Thus the hypotheses of the Trotter-Kato hold and we may con-

clude by it that

ITN(t;qN) z - T(t;q*)zl - 0 uniformly on [0,T]

for each z E Z. a

L
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Now, since PN __ I strongly on Z (Lemma 3.4), Theorem

3.5 along with Proposition 1.4 guarantee the convergence of a sub-
-N

sequence of solutions q of the approximate identification prob-

lem to a solution q of the original identification problem (IDA).

We now briefly describe the concrete form this approximation
N = 33N3 N 3N N N,

takes on ZN S3(A N ) X S0(AN) x S3(A N ) x S0(AN). With C1 iB

as the basis elements for S3(AN) Aefined in (1.15), we obtain
.N N 4N+3

as a basis for Z the set {ii=0  where

N(Ci,0,0,0), i = 0,...,N

N (0,C _(N+1),0,0), i = N+I,...,2N+l

0),N 0 i = 2N+2,.. .,3N+2
' -(2N+2)' ' '

( ,OC i(3N.3)) i = 3N+3,...,4N+3.

The usual Ritz-Galerkin formulation leads to a 4N+4-dimensional

matrix system for the coefficients wN (t) in the expansion formatrix

zN(t) relative to the basis for ZN. In particular, one finds

(see the end of Section 2.2) that

N 4N+3

i=O 1 1

N N
where wN(t) = (w (t),...,W 4N+3 (t)) satisfies0 4N3

N N N N NQ (t) = K w (t) + R F

with (QN).i = <8i,8.>, (KN )ij = <8i,_sC'8>, (R NF)i = <oi,F>. This

becomes

(3.6) N (t) GN w (t) + FN

with

4
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0 I 0 0

N1 N 0 aaA(AN 
N

b(AN)A 1  N - 3
0 0 0 1

b(AN 1IAN 0 c(AN) IAN-bI 0

N N N )N N N N
with (A02 )i,j '<C 1C 0 , (A1  -<DC1,DCj> 0 ' (A3) ij

N DCN>Ci , 0 '

(FN) - i N+I,...,2N

i 0, otherwise

N N
fNwhere = (f0 ,...,fN) corresponds to the "load" f in (3.1)

and is given by fN (A2)-l(RNf) with N <CN

Also, since zl(t) - y(t,.), the approximation to the dis-

placement y is given by

N N N N N
(3.7) yN(t,-) = z (t) W (t)C

i=0

As we did with the Euler-Bernoulli equation, we may rewrite

(3.1), uusing a simple change of variables, as an abstract equa-

tion in a space which permits the use of lower order splines for

ZN . Again, this leads to a different approximation.

Consider the following change of variables:

vI = Vi Dy - /

v2 = yt

v3 = rc D*

V4 =

Then, (3.1) becomes

L .... .. .... ...... . .. . * + .. . .. , "-'.. ..-- . .
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Vl 0 /- 0 0 V1

d V2 r 0 0 0 V V2(3.7) 3 xv ( !
V 0 0 v4

4 4

0 0 0 -i/i V1

0 0 0 0 V2
0 0 0 0 V3

w=C DV + C v

where v = (Vl,V 2 ,V 3,V4). This is the standard form for a hyper-

bolic first-order system of partial differential equations [37,

p. 108], since C1  is symmetric.

This may be put into the previous formulation

1(t) = _W(q)z + F(q,t), t > 0

z(0) = z 0

with z(t) now taken to be z(t) = (zl(t),...,z4 (t)) = (Vl(t),

0 0 0 0
...,v4 (t)) in H x H x H x H0 . In the case of boundary condi-

tions corresponding to a fixed beam (y(t,0) = y(t,l) = (t,0) =

IP(t,l) = 0), we obtain v 2 (0) = v2 (l) = 0 and v4 (0) = v 4 (l) 0.

This formulation in a product of L2 spaces was used to generate

the "data" for numerical experiments using the method of lines

package MOL1D [22].

Since this formulation does not yield y(t,') directly, an

auxiliary equation 5 Z is included and integrated along

with the system above, yielding y(t,.) z5 (t).

i
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Section 3. Numerical Results

We summarize in this section results of some of our numeri-

cal experiments using the approximate scheme presented in the

previous section, based upon cubic splines. A description of the

package which implements this method is the subject of Chapter 4.

As in the Euler-Bernoulli case, we took as data the values

of the solution of a model of the form (3.1) whose parameters

-Nwere known and sought a solution q of the approximate identifi-

cation problem for different values of N. The "data" {ij },

i = 1,...,r; j = 1,...,9 were generated in this case using the

L2 formulation of the Timoshenko equations (3.7) and using a

general purpose computer code (MOLlD) to solve this system of

first-order hyperbolic equations to obtain displacements y(t,x).
Then {^ wit " were

yij}, i = l,...,r, j = i,...,Z with Y(ti,xj) were

used as the observations or input to the approximate identifica-

tion package. For the experiments listed below, we used k = 9,

r = 10 and generated the "observations" at x. = j/l0,J

j = 1,...,9 for times t. i/10, i = 1,... ,0.

The optimization algorithm requires an initial guess for the

parameters q N,, which is referred to as the "start up" values

in the tables below. The values of the parameters to which the

optimization algorithm converged for a given N are denoted by

q N, and J(qN) is the cost functional for those values of the

parameters.

Example 3.1. We consider the motion of a beam initially at

rest with fixed ends and described by the system
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-2t
= qlYxx- ql x + l0e sin 2t

ptt = q3 xx + q2 (Yx P)

y(t,0) = y(t,l) = i(t,0) = P(t,l) = 0

y(0,x) = yt(Ox) tx) (0,x) = 0.

The numerical results are given in Table 3.1.

Table 3.1

N -N - N J(N)

6 .9882 726.19 3.6864 .526 x 10-4

8 .9969 781.00 3.9218 .735 x 10-5

10 1.0009 794.29 3.9684 .108 x 10-

12 1.00036 794.90 3.9732 .165 x 10-6

16 l.C0033 797.85 3.9883 .256 x 10-7

TRUE VALUE 1,0 800. 4.0

START UP .9 1000. 3.9

When only one parameter was treated as unknown and the other two

were held fixed at their "true values" in Table 3.1, the follow-

ing results were obtained.
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Table 3.2

N -N J(N)

3 .93922 .122 x 10

4 .98452 .105 x 102
-3'

5 .99533 .211 x 10

6 .99824 .581 x 10

8 .99975 .770 x 10

TRUE VALUE 1.0

START UP .9

Table 3.3

N qj(N

4 814.85 .109 x 10-2

5 804.07 .215 x 10-3

-4
6 801.47 .587 x 10-

8 800.j1 .772 x 10

TRUE VALUE 800.

START UP 1200.

Table 3.4

N -N-

3 3.77091 .130 x 101

4 3.91936 .108 x 102

5 3.97700 .214 x 10

6 3.99157 .586 x 104

8 3.99917 .772 x 105

TRUE VALUE 4.0

START UP 3.8

t
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Example 3.2. We consider a clampcd beam deformed to the

shape O(x) cos Ax + cosh Ax - K(sin Xx + sinh Ax) with

X 4.730, K = (sin A + sinh X)/(cos A + cosh A), then allowed to

vibrate freely, which can be described by the system

ytt = qlYxx -ql~x

tt = qq 2(Yx - )

y(0,x) = *(x), yt(O,x) - 0, P(0,x) - 4W(x), t(0,x) = 0,

y(t,o) = y(tl) - *(t,0) ip(t,1) = 0.

The numerical results are given in Table 3.5.

Table 3.5

N N -N -N (N)

4 1.1812 1325.3 3.6437 .613 x 10-2

8 .°980 1125.1 3.993 .167 x 10-2

10 .9938 1222.3 4,1074 .477 x 10-3

12 .9510 1134.7 4.1053 .468 x 10- 3

16 .9908 1152.3 3.8875 .242 x 10- 3

20 .9959 1181.7 3.9593 .145 x 10- 3

24 1.0009 1193.7 3.9771 .122 x 0-3

TRUE VALUES 1.0 1200. 4.0

START UP .9 800. 3.8

1.s
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CHAPTER 4. IMPLEMENTATION OF THE APPROXIMATE

IDENTIFICATION PROBLEM

Section 1. General Description of the Codes

The final chapter describes how the previously discussed

methods were implemented into computer codes. While we have a

different computer program for each of the methods discussed in

Chapters 2 and 3, the basic structure and much of the code is

the same for each program. In fact, the computer codes used for

the identification problems discussed here were developed from

codes written for the identification problem associated with a

wiave equation model examined in [ 7].

The computer codes were written with flexibility as the prim-

ary guiding principle. When more than one approach could be used,

the one that would most easily be adapted to handle extensions

or modifications of the current problem was chosen.

We describe below the algorithms in a general setting.

Most of what follows is also applicable to codes used for identifi-

cation problems associated with the one-dimensional hyperbolic

and parabolic equations in [ 7] and with convection-diffusion

equations discussed in [ 5]. All of the codes were written in

FORTRAN and implemented on the IBM 370 at Brown University.

While this chapter is intended as a description of algori-

thms used and not as documentation for the computer codes, refer-

ence is made to the specific subroutines which implement the

various algorithms.
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We begin by outlining the general program for estimating the

solution to the identification problem (IDA). We have seen two

formulations of the Euler-Bernoulli equation and one of the

Timoshenko equations for transverse vibrations of a beam. All

gave rise to an abstract equation of the form

i(t) = .V(q)z(t) + F(q,t), t > 0
(4.1)

z(O) = ZO(q),

where z(t) = (z1 (t),...,zs(t)) E Z, zO(q) = '(x;q). In every

case, we have y(t,.;q) = zl(t;q) where y(t,x;q) is the trans-

verse displacement of the beam at x E [0,1] and at time t

associated with the parameters q E Q c RP.

In order to discuss the common computational features of

each of the approximate identification problems discussed in

NChapters 2 and 3, we note that in each case we took Z =

N X xN where ZN possessed a basis {B N } N = of appro-Z1 . 3  i i 0 of apro

priately modified B-splines; the basis for ZN then was

{N = N N
oa s(N+l) - 1, where a(i-1)(N+l)+j(x) = B(x)ei,

i = 1,...,s; j = 0,...,N, with e. the usual basis for R3 .
1

In each case, the choice of .QN = PN -cPN led to an approxi-

mation of y(t,x) of the form

(4.2) yN(t'x) N N N(t)BN(x)

i=0 1 1

NN N
where wN(t) = (Wl(t),...,wN(t)) satisfies

1 a



96

(4.3) QNN (t) K N t RF(q,t), t > 0,

N N
w N(0) = P Ni',

with
NNN N N(Q )ij = <8i> (KN). >V

N N N-1iN
(R F) i = <6iF>, PNT = (QN) R N(T).

This formulation includes the following three problems from

the previous chapters:

1. The Euler-Bernoulli equation with boundary conditions of

type k, with approximations based upon quintic splines. In this

N N
case, s 2, and B B satisfying boundary conditions of

1 i ,S

type k. The inner products are those in Z = Hk(a) x HO , namely=+ ,v2

<uv> =<UVI>2,a  <u2  20

2. The Euler-Bernoulli equation with boundary conditions of

type 1 (simply supported), with approximations based upon cubic

splines. In this case, s = 3, and BN B N with BN(0)i i,3 (0

BN(1) = 0. The inner products are those in Z = H0 x H0 x H0

namely <u,v> = <ul,v 1 >0 + <u2,v2 >0 + <u3,v 3>0.

3. The Timoshenko equations with fixed end conditions,

with approximations based upon cubic splines. In this case, s = 4
a N N wih N N

and N B with Bi(0) = BN(i) = 0. The inner products are
1 i 3 1

1 0 1 0those in H 10(a) x H x H0 (c) m H , namely <u,v> =  ,Vl>l, +
thos in > a + U H0 >U a >

< 2 0 + <u 3,v 3> l,c + <u4,v4>0'

Then, given data { ij}, i = l,...,r; j = 1,...,i correspond-

ing to displacements of a beam cross section located at xj E [0,1]

at time ti, the approximate identification problem is to find

-N which minimizes

___________
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(4.4) DN (q) J(q,y N(t,.;q),^) .

r yN(ti'xj ;q) Yij 2

i=l j=l

subject to t i--- yN(t,.) satisfying (4.2) and (4.3), where

i = (Y1(tiXl) " Y(tix))"

So any implementation of the approximate identification prob-

lem requires an iterative procedure to minimize N(q) and a

method for approximating solutions to the system of ordinary

differential equations (4.3).

We discuss the common features of the computer program for

each of the above problems.

As mentioned above there are two major tasks involved in the

approximate identification program. The first is an unconstrained
N

minimization problem for the sum of squares DN (q) =

I e(q)Te.(q), where eij (q) = yy(ti,x. ; q )  Yij ei
i=l
(eil,...,e. ). and y N(ti,.;q) is the solution of (4.2)( i l , . - , i m - 14 2

(4.3). This task is solved efficiently by the Levenberg-

Marquardt algorithm, and IMSL's version ZXSSQ has been used for

this purpose. The second major task, required each time we evalu-

ate 0N (q), is to solve numerically the system of ordinary dif-

ferential equations (4.3). Since a wide variety of problems have

been solved, some of which were stiff (for example, the Euler-

Bernoulli model with structural damping coefficient 6 > 0), a

general-purpose variable-step, variable-order method was required

which would handle both stiff and non-stiff equations efficiently.

Gear's algorithm, with a switch between Adams-type and backwards-

difference methods was suited to this task; IMSL's version DGEAR
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was used. Both of these algorithms will be described below.

In addition, integration of the system (4.3) requires an

efficient method for performing each of the following subtasks:

i.) Compute the basis elements. This requires an effici-

ent method for evaluating the modified B-splines
N N

BN(x) and their derivatives, where {BN(x)}i= 0 are

splines (linear combinations of the standard B-splines)

which satisfy prescribed boundary conditions.

N Nii.) Compute the matrices Q and KN  in (4.3). This in-

volves evaluation of inner products of the form

a.. = <D"BN,D DB >, with P,v E {0,1,2}, and storing

the resulting matrix (aij) efficiently.

iii.) Computing projections. We need to project the initial

function PNY = I b ii, with b = (b1 ,. .. ,bo) giveni i'
N -I N' 0= N

by b (QN) R (Y), and similarly we require P F(t)

where F is the non-homogeneous term in (4.1).
N N

iv.) Compute the "spline series" N wNxBN

i=O
v.) Evaluate the right-hand side of the system (4.3), namely

f(w,t) (Q N)_-1{KNw(t) + RNF(q,t)}

Subtasks i.)-iv.) comprise the "spline package", discussed in Sec-

tion 5. The subtask v.) is discussed in Section 6, where alterna-

tive ways of performing the computations are discussed. First,

we give an overview of the program structure.
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Section 2. Program Structure

We give an overview of the program structure. We have noted

previously that macroscropically the program may be described as

an optimization algorithm for minimizing CN(q), combined with

an approximate method for integrating the system of ordinary dif-

ferential equations (4.3) in order to evaluate 4N(q). Since both

of these tasks are solved by iterative methods and can require

considerable computation, it is useful when analyzing efficiency

to divide the program into a structure on three different levels:

Level 1. Preprocessing, or computations which can be done

prior to iteration. These include reading data

{9i.}, computing and storing inner products in QN
K N

and K, and computing projections which do not

depend on the parameter vector q.

Level 2. Computations inside the iterative loop for minimiz-

ing DN(q). These include projections of the ini-

tial values (which may depend on q), solving the

system (4.3), and computing

N N N
y (x,t) = w (t)Bi(x)

i=O

Level 3. Computations which are performed at each step of

the algorithm for integrating the system (4.3);

these computations are those required to evaluate

the right-hand side of (4.3).

The levels are connected in the following manner:
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EI
lbO

where SXSSQ is the routine to minimize N
wher ZXSQ s te rutie t miimie (q), and DGEAR numeri-

cally integrates system (4.3). For a particular N (dimension

of approximating subspaces), computations at level I need only be

performed once. Computations at level 2 must be done at each

iterative step of the optimization routine ZXSSQ. Since each

iterative step of the optimization algorithm requires that the

system (4.3) be solved (at least once per step), and the numeri-

cal algorithm for integrating (4.3) requires many evaluations of

the right-hand side of (4.3), computations at level 3 are done

most frequently.

In terms of routines in the packages, the routines at level 1

are those called from the main routine. These include READ, which

reads input data and program parameters, and SETVL which sets

the knots and computes inner products and projections which do

not depend on q by calls to the spline package.

The computations at level 2 include those performed in sub-

routine FUNC and the routines called from FUNC, such as INIT,
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which computes the projections of the initial data, and CNVRT
N

which computes EwiBi(x) by calls to the spline package.

The computations at level 3 are those done exclusively in

routine DEV.

Section 3. Optimization by the Levenberg-Marquardt Method

We briefly describe the Levenberg-Marquardt algorithm. We

wish to find q* which minimizes

1T
I(q) = 1 eT(q)e(q)

where e(q) is the vector whose components

e(i-l) t +j(q) E y(ti,xj ;q) - yij, i = 1,=

are the pointwise errors (residuals) stored as a vector. We

construct a sequence of iterates q(j) such that q(J) - q*

by using an iteration scheme of the form

(4.8) q(j+l) = q(j) + d(j)

where d(j)  is a solution of

(4.9) A(J)d ( j )  = -4,(q ( j ) ) ,

where V denotes the gradient (.-,...,---) and is a

matrix characteristic of the method.

If AM = I, the identity matrix, then the method is steep-

est descent. If A (j ) = V2 1(q(j)), where V2  denotes the

Hessian matrix with entries qi2q, then the method is Newton's

method obtained by truncating the Taylor series expansion after
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the quadratic term. While the former method is a strict descent

method (¢(q(j+l)) < t(q(j)) and is theoretically globally con-

vergent, in practice convergence is both slow and unreliable

[17, p. 18]. On the other hand, Newton's method converges quad-

ratically in a neighborhood of q* [17, p. 351, but it requires

evaluation of the Hessian matrix, which makes it impractical for

the problem at hand.

However, since

(4.10) VID(q) = G(q)TG(q)

3e.
where G(q) is the Jacobian of e (Gij = ) and

(4.11) V2 (q) = Eei(q)V 2ei(q) + G(q)TG(q),

we may approximate V2 D(a) by G(q) TG(q) for small residuals.

Thus (4.8) and (4.9) with

(4.12) A( j )  = G(q(j))TG(q(J))

is the Gauss-Newton method. Convergence of this method is at

least linear in a neighborhood of q*, and quadratic if 4(q*) = 0

[17, p. 94]. However, this method experiences problems if G is

ill-conditioned (there is no guarantee that G even be full rank

away from q*). The Levenberg-Marquardt approach is to replace

(4.12) with

(4.13) A( j ) =(j)D + G(q(j))WG(q(j)),

where D is a positive diagonal matrix, with v(J) > 0 chosen

sufficiently large to ensure A (j )  is positive definite and to

... .... ..... . .. .. )
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ensure strict descent (,D(q(J+l)) < O(q~j))). In Marquardt and

Levenberg's original scheme, Dl = I was used. The IMSL imple-

mentation ZXSSQ uses D.. (GTG)..

iii

Note that as ui.) becomes large, the direction of search

d approaches that of steepest descent, while()) In = 0 is

the Gauss-Newton method. The method is locally convergent, and

the rate of convergence is at least linear [17, p. 96 ] e
ae (q)

Since G = J is not generally available analytically,ij aqi

it is computed numerically. An option in ZXSSQ permits one to

have the Jacobian computed numerically by

( ( .e+(q ''''q e (''qp) - e (q ,..., q , ,q)(4.14) G . :j = iP6
zJ 6i

where 6i = max(jqij,.l)*/vu, where u is the relative precision

of floating point computations. While this avoids the problem

of having to provide an analytic Jacobian, it costs p addi-

tional evaluations of '7(q) to numerically compute G. Thus when

G is fully evaluated, p+l evaluations of 4)(q) are required

per iteration.

If the Jacobian is not changing too rapidly, it is possible

to approximate G using the information in the direction of the

most recent step to update the Jacobian. ZXSSQ uses, when ap-

propriate, a rank-one update of the form

(15) a(j) = G(j) [eqjl))e(q(J)) - GJ)aaT

a a
where a = q(j+l) q(J). When this approximation to the Jacobian

is used, no additional evaluatons of t(q) are required, and so
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4(q) will be evaluated only once in such an iteration step.

The iteration (4.8)-(4.9)-(4.13) is repeated until one of

the following conditions is met:

(4.16) 1. JV4(q(J))l < 6

2. (q(J+l)) -4P(q(J)) l $(q(J)) [ < C

3. i(q ) and 4)(q)) agree to NSIG significant

digits.

Section 4. Integrating the System of Ordinary Differential
Equations

We next describe very briefly the method used for integrating

the system (4.3), namely IMSL's routine DGEAR [23]. For a

description see [21]. We only include those details which afffect

the choice of parameters for the ID package and provide some ap-

preciation for the amount of computation required.

To abbreviate the notation, write the system (4.3) in the

form:

(4.17) w f(w,t), w(O) = wO .

The methods in DGEAR are based upon difference approximations of

the form

(4.18) wk l i Wk-j + h O * wk-j' 60 > 0,

where aj, Bj are constants associated with a particular method

and where wk is an approximation to w(tk), Wk = f(wk'tk) is

an approximation to *(tk) and h is a constant stepsize

(tk+l = tk + h). The Adams methods of order m correspond to

the values K1 = 1, K2 = m-l, and the backwards difference for-

mulas (BDF) correspond to the values K1 = m, K2 = 0. If (4.18)

is solved with all past values exact, then wk - w(tk) = O(h m + l )
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for small h, and hence the method is said to be of order m.

As (4.18) is generally implicit, it must be solved itera-

tively. If we write

(4. -kW h 2 a(4.19) g(wk) = wk - h0f(Wktk) 1 k-j 1 k-j'

then (4.18) is the implicit equation g(wk) = 0. DGEAR provides

a variety of methods which the user may choose to solve

g(wk) = 0.

First a predicted value of w 0 )  is obtained by an expli-

cit method. This is equivalent to (4.18) with B0 = 0, but DGEAR

uses the Nordsicck formulation (see [21]). Then g(wk) = 0 is

solved iteratively by one of a class of methods of the form

(4.20) w (i+l) = W (i) - (p(i) -_1 g~~i
k k k k ~~

• ~ i = wa

Note if P~i) = ( w) (i)) = I -ho(w ) J ( w~ i ) ) , then (4.20)k w k w J k
is Newton's method. If p(i) = I, then (4.20) is functional

k
(fixed point) iteration.

Between these two extreme lie various approximations to

1~(w~i)) which are more cheaply evaluated. One choice isWi) k
Pki) = p 0). i.e., do not re-evaluate the Jacobian at each itera-

tion. The so-called chord method uses Pk = P for some

k' < k, corresponding to the parameter MITER = 1 or MITER = 2.

A still less costly method, particularly where large systems are

concerned, is one in which -- is approximated by a diagonalaw
matrix whose entries are forward difference approximations to the

diagonal of the Jacobian a- (MITER = 3). If 2- is not avail-

able analytically, it may be computed numerically (MITER = 2).
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For most of the examples considered here, the Adams methods

(METH = 1) with functional iteration (MITER = 0) were most effici-

ent. However, it should be noted that the PN cjpN methods can

lead to moderately stiff ODEs, as in the case where structural

damping was included, in which case the BDF methods (METH = 2)

and numerically computed Jacobian (MITER = 2) were used.

While the methods (4.18) are based upon constant stepsize h,

DGEAR does adjust the stepsize and order. Briefly, this is ac-

complished by interpolating the past data Wk-j, *kj (using the

Nordsieck array) to obtain the values of Wk-j* required at

tk - jh* where h* is the new stepsize. Following a step of

size h at order m, DGEAR attempts to readjust the stepsize up-

ward every m+2 steps; this is done by estimating the local trun-

cation error at orders m-l, m, and m+l and choosing h* to be

the largest permitted by these three, and the order m is reset

accordingly. The estimated truncation error is effectively com-

pared to the requested local truncation error bound TOL which is

specified by the user.

One further parameter must be specified, namely an initial

stepsize HO. Since the method starts out with a first order ap-

proximation m = 1 (no previous history available), HO must be

small. For the ID problems considered, TOL was usually taken to

be 1. x 106 and H0 to be 1. x 10-.

4 - !
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Section 5. The Spline Package

The spline package contains the routines for evaluating

splines and their derivatives, for computing projections onto

spline subspaces, for computing inner products of the form

<Dk B ,DkB N  >0' 0 < k < n, and for evaluating the "spline<DkB ,n' j,n>O -f

series" ZwB n(X).

a) Evaluation of Modified B-Splines and Their Derivatives

The evaluation of the B-spline basis functions is of course

fundamental to all the routines in the spline package. The B-

spline basis functions were introduced in Section 3 of Chapter 1.

Recall that there we defined all the B-splines in terms of a single

function. We defined
• = n-l -

(4.21) Bn(x) (x-y)+ - ( 1) i )(xj)n
j=O

Then, the B-splines of odd degree (even order) were obtained by

taking n = 2m (m 2 for cubics, m = 3 for quintics) and a

N {xN+m-
partition A= {xii=l-m with x. = i/N; we defined

h-xx
i+1 - xi

yi x- mh
^N
Bn (x) = n((x-yi)/h), i = l-m,...,N+m-1.

Finally, the modified B-splines B (x) are computed by takingi,n-I

the appropriate linear combinations of the n as in (1.1)-i,n-i si1I1)

(1.18) so that the BN  satisfy the given boundary conditions.• i,n-1

Fn is the fundamental spline of order n, with knots at

-- . . . , . ..n
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O,1,...,n, and with support on [0,n]. The splines B have
N fl

knots AN, and the support of each B i2m-l is [X im,Xi+m]
(or [Yiyi+2m] ) "

N

For the uniform partition A , two methods of evaluating the
N.BNn1(x) may be used. The first method uses the piecewise

ni

polynomial representation of B For example, in the case

n = 4 (cubic splines), we obtain (see [35, pp. 89-90])

(x-x i2)3, if x E [xi 2,x i _ ]

h3 +3h2 (x-xi )+3h(x-x. 2 3

if x E [xi,x.],i-l 1i

x 1 3  2 2
3(x )  +3h i+l Xi+l -3(Xi+l

if x E [x i ,xi+l ] ,

Xi+l-X) 3 , if x E [Xi+l,x i+21

0, otherwise.

When each of the above expressions is evaluated using Horner's

scheme, this is a very efficient method, requiring only four

multiplications. The derivatives of the B-splines may be repre-

sented similarly. However, a different representation for each

n and for each derivative is required.

The algorithm we have used for the computations in Chapters

2 and 3 may be used for splines of arbitrary order and for deri-

vatives of any order. This algorithm is based upon the iterative

formulas satisfied by the fundamental B-spline (see (42, p. 136])

(4.22) Bn(x) = xBnl(x) + (n-x)Bn(x-l)

and

L-
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(4.23) DFn (x) = (n-l)[B nl(X) Bnl(X-1)].

The iterative formula (4.22) can be used to evaluate Bn(X)

for any x. Since we evaluate splines only when the values of

all non-zero splines at x are required, as when computing the

matrix whose entries are <BN BN > for 0 < Ji-jJ < n,

j = 0,...,N, the algorithm may be refined to efficiently produce

the values of all non-zero splines of order n at x.

First note that B. +j,nl(x) =F n((x-y.+j)/h)

Bn((x-yi)/h-j). Given n, find i* such that n-l < (x-yi,)/h<n,

and define (x-yi*)/h. The values of the non-vanishing

B-splines i*+j,n-I(x) j=0 then correspond to the values of

Bn ( -j), j = 0,...,n-l. To compute Bn (-j), we note that (4.22)

implies

(4.23) Bj(C-i) = (C-i)Bj_l(E-i) + (i+j-E)_B 1 (&-l-i),

for j = 2,...,n; i = n-j,...,n-l.

1l, if j = n-I the iterative formula

Now, since (-J) = 10, if j < n-I t

(4.23) may be used to evaluate Bn (-j), j = 0,...,n-l. Then,

B +i,,n-l(x) = Bn(t-j), i = 0,...,n-l.

If derivatives of the B are required, as when thej,n-lIeurd swe h ma-

trix with entries <D2 Bi,5'D 2BN' >0 is to be computed, then (4.22)

may be used in conjunction with the above algorithm. We compute
Bn~l( -j), j = 0,...,n-l, then compute DB (E-j) = (n-l)(nl( -j)

nl j in n-l
- n_l( -j-l)). For second derivatives, D2Fn (E-j) =

(n-l)(n-2)(Bn 2 (E-j) 2Bn. 2 (&-j-1) + Bn_ 2(' -j2)). Note that in

general to compute D kBn (-j) k < n-1, we need only evaluate
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Wn k(-j) and perform k differences on these values and mul-

tiply by (n-l)!/(n-k-l)!. Then, DkBj i*,n l(x) = Dkgn( -j).

Finally, the BN are computed using (1.15)-(1.18) when
j,n

appropriate. We note that each of these modification formulas

requires only 01'that BN BN ,BN be modified. Moreover, these

are changed only when x E [0,x 2 ] or x E [xN_2,xN], since the

functions used to modify vanish outside these intervals. So we

first check if i = 0,1,N,N-I and x lies in one of the two

intervals. If so, we compute

N N xN ^ 0NB.(x) B (x) - c. - c , -(x) i1 i,IB-I ,2 -2 '

or

B_(x) = Bi(x) - ci,3BN + l (x) ci,4BN+ 2 (x), i = N-1 or N,

where the c.. are the coefficients appearing in (l.15)-(1.18).

Remark. The algorithm presented for computing the unmodified

B-splines presented above is essentially the one in [42, p. 205]

and is attributed to DeBoor.

The algorithm to compute the n non-vanishing B-splines at

x requires n2 + 2n-l multiplications, as compared to n2 -n

multiplications for the piecewise polynomial representation. How-

ever, the flexibility in computing derivatives and splines of all

order in one algorithm make the iterative algorithm attractive.

Furthermore, the spline computations occur primarily at level one,

and so the slight difference in efficiency has a negligible effect

on overall execution time.

This algorithm appears in the various packages as SPQV,

SPNVAL, or SPPVAL.
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b) Computation of Inner Products

The computation of the inner products is carried out via a

composite Gauss-Legendre two-point rule:

hK
(4.24) f(x)dx h f((v - V3/6)h) + f((v -+ //6)h)

0 v= 1

where h = 1/K, and K is chosen to be a fixed multiple of N

(usually K = 8N). The inner products <B ,BN>0 are calculated

= 3 f /2)h, x2  = (V - + vr/2)h, evalua-

ting all non-zero splines at xl, x2v, forming the non-zero pro-
N N

ducts BN(XIv)B (XlV )  and accumulating the products in a banded

matrix (storing only nonzero subdiagonals as columns). This

algorithm appears in the various packages as SETQ, SETMIAT,

SETMBT.

We note that for large values of N, it may be worthwhile to

N N N Nuse the property that <B , B > = <B i+'B >, where i = 2,... ,N-2j ±' j+l '" ' "

for cubic splines and i = 3,...,N-3 for quintic splines.

c) Computation of Projections

The projections in the 'Im -norm onto the spline subspaces

are easily computed, once the inner products <BN,BN> have been

computed and stored. Let pN be a typical projection operator

in the 1.m-norm, m = 0,1, or 2. Suppose we wish to compute the
projection of € onto Sn(AN) where n = 3 (k = 0) or n 5

(k = 1,2, or 3). Then the projection PN is given by P =

NN aB where a (ao,..,a is given by

( . 5 a( aN)

N 1l N(4.25) a =(Q )R
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with

Nm)Ni <,BN> m< DN>0 (l mN
= = <D ,D > 0 D B(x)dxa m ' i 0 0

and an N N N N > 1 mN mN(Q )i5 = <B B> < D B.> = D B(x) DB (x)dx.

The matrix Q' is computed once via the Gauss-Legendre rule and

stored; thus to compute the projections, we need only compute the

inner products <Dm0 B N>O i = 0 .,N via the Gauss-Legendre

rule (4.24).

We note that in the case where the ImI -norm is used, the

projections are still given by (4.25); i.e., the projections them-

selves do not depend on the weight a. This is because with the

-norm, a = (aQN) 1aR N (QN) -R N,, where QN and RN  are

as above. Finally, to compute the projections, we need a method
N

for evaluating I aiBN(x).
i=O

d) Evaluation of the "Spline Series"

We also have two methods for evaluating

N
(4.25) s(x) = CiBN  1(x)

i=O ,n

First observe that because of the local support of the B-splines,

that only n terms of (4.25) need be evaluated. Thus we can gen-

erate the values of the n non-vanishing B-splines at x using

the previously defined algorithm and perform the linear combina-

tion. A slightly more efficient method was pointed out in [42,

p. 193]. We describe this method briefly here.
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Again, first find i* such that n-i < (x-yi*)/h < n, and

let (x-Yi,)/h. Then,

N ^N n-i
(X= i , n-1(x) = I=O ci*+iB n(-i).

i=O i~li=O

Define c. = 0,...,n. Using (4.22), it is easily
i  i,+i

shown that

n-i 0- n-i 1
Sc.Bn (C-i) = i n - (E-i)

i= 1 i=l

where c. = (&-i)c 0 + n-E+i-l)c
0

n-i i

i n 2
2 1

where c2 = (E-i)cl + (n- +i-2)ci 1
1 1

n-i
= I cW .(-j),

i-j i n-j

where

(4.26) c . (&-i)c. - I  + (n- +i-j)c 
-
1

•i i i "

For j = n-i, this becomes

cn-in-i (E-n+l)

n-1Cn-1,

= Cn i

Thus we generate the triangular array

- - ------ _______________ __________ ________________________
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0 0 0c0  1 n. -n_1

1 1
c I  .. Cn_ 1

n-i

using (4.26) and take s(x) = n -l This algorithm requires only• n-l"

n -n+2 operations. To get s(x), we need to write s(x) in

terms of the unmodified B-splines N - (x). We simply find

^ 1N+m-1 such that
i i=l-m

N+m-1 N
(4.27) +m-i Bnl(x) = c cxN

i=1-m i i=0 iin'n-ln

Ci+m-i ci for 2< i < N-2. The others are found using (1.15)-

(1.18) to write BN in terms of the BN
"The computa-

tion of the coefficients c. need only be performed when the ci

are changed. For example in the case of cubic splines modified as

tin (1.15), we find the requirement that

N+I N N N
c cB. c.B.

i-- i i=O 1 1

implies c. = c. for 2 < i < N-2, and

~ ^N ^N ^ ^N =BN + Nc-B 1 
+ EB0 +  B 1 c0B0

N AN -
N  N ^N N(recall that B 0 = B0  4-N and B1 = B1 -B 0 /4) which in turn

is equal to

^N N ^N

= -4c 0B 1 + (c0 -cl/4)B0 + CIBI.

Thus we find that E- = -4c0, E = c0 - c1/4, C1 -- C1, and simi-

larly cN- = Cl' CN - N-/ 4, CN+l c- 4ON"

N-1 N _- N l
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For the quintic splines, we find that corresponding to the

modified B-splines in (1.16) for simple end conditions, we obtain

ci = ci, 0< i < N

c-2 = 12c0 - c2

(4.28) c-1 
= -3c0 - cl

cN+l = -3cN - cN 1

cN+2 = 12cN - CN-2"

Corresponding the modified B-splines in (1.19) for fixed end con-

ditions, we obtain

ci~ ~ = i' 0< i < N

c - =41.25c0 + 32.5c I + 2.25c 2

(4.29) c- -4.125c 2. 25c 1  "125c 2

C N+l -4.125c - 225c N-1 125cN-2

CN+2 = 41.25cN + 32.5c N- + 2.25cN-2

Finally, for the modified B-splines corresponding to the canti-

lever beam in (1.18), we obtain (4.29) except that

(4.30) CN+l m l5CN "cN-2

CN+2 = 3cN 2 cN-I"

Section 6. Evaluation of the Right-Hand Side of the Approximating

System

Since the most frequently evaluated computations occur at

level 3 where we evaluate the right-hand side of the system (4.3)

it is worthwhile to organize these computations efficiently.
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We consider ways to evaluate the right-hand side of the

system (4.3)

N (t) (Q N) {KNwN(t) + R NF(q,t)}.

N-1iN NConsider first the homogeneous part, (QN) K w. Note that Q

will have a block diagonal structure

Q1

Q2
N

Qs

To be concrete, let us restrict ourselves to the case s = 2,

which is the case of the Euler-Bernoulli formulation. In this

case,
QN

QN I O Q is (N+l) x (N+l)

0 Qj

and

[0 KNi
KN = [ KN KN is (n+l) x (N+1).

N N

Each of the submatrices Qi and Kias a banded structure; each

will be 7-banded when cubic splines are used and 11-banded when

quintic splines are used. Moreover, since each is a symmetric ma-

trix, these can be stored efficiently by storing the subdiagonals

and the diagonal as columns of a matrix which is (N+I) x 4 (or

(N+I) x 6 for quintic splines).
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Two ways can be used to evaluate a general term (Q.) K v,

where v = (v,...,VN+l). One way is to compute A = (Qi)-1K N
1~~ NJ)

at level one and save the matrix A. Then when evaluating the

right-hand side at level 3, we need only do a matrix multipli-

cation Av. However, A will in general be a full matrix (no

banded or sparse structure), and so this multiplication requires

(N+l)2 operations.

Another way to do this, which preserves the banded structure,

N Tis to factor Q. = where L is lower triangular, at level 1
1

by the Cholesky algorithm, and store the factor L as a banded
matrix (requiring (N+l) x 4 or (N+l) x 6 locations). Then

at level 3, we compute

N
i) =v

T
iii) Lx= 

:
Step (i) requires 7N-5 operations (llN-9 for quintics), steps (ii)

and (iii) each require 4N-1 (6N-20 for quintics) to backsolve a

banded triangular system of algebraic equations. When done in this

manner, the computation of (Q) KNv requires 15N-7 opera-

tions, N > 4, when cubic splines are used, and 23N-49 operations,

N > 6, when quintic splines are used. Thus for large values of

N (N > 16), there is a clear advantage to the second approach.

N TThe Cholesky decomposition of the matrix Qi into LL

was carried out by IMSL routine LUDAPB, and the backsolution (ii)

and (iii) by IMSL routine LUELPB.

We can now compare the computational efficiency of the two

approximations discussed for the Euler-Bernoulli beam. In order to
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'I

make a comparison, consider the case when y = 0 (no viscous

damping).

For the quintic spline formulation, we had

QN = Q

0 Q2

0 KN

K N = 11
N N N-IN

with Q- K N So (Q N) K had the structure

LQ 21K 2 6Q 21KN 3

So with u = (u1 ,... ,uN+1), v = (v1 ,... ,vN+1), we compute

N -1 KKN(uu
[ Q 1 (cKN u + 6KNv)

requiring about 34N operations to evaluate when 6 > 0 and

about 29N operations when 6 = 0.

For the cubic spline formulation, we obtained

0 I 0

(QN -1 KN 0 0 a(AN)IA N
(Q )K = 0 02 1

N -I N 00
0 (A2) A1  0 0

when y,6 are both zero. The evaluation of (QN) 'KNQ) requireswhen

about 30N operations. In addition, an extra set of N+l equa-
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tions has been used, compared to the quintic spline formulation.

Therefore, based upon this and our computational experience

there seems to be no advantage in going to the cubic spline for-

mulation.

To evaluate the non-homogeneous term, note (QN) lRNF(q,t) =

NPNF(q,t). The projections may be computed as in Section 5. If

the load f(t,x;q) can be written as g(x)h(t;q), then F(q,t)

has the form (O,g)T. h(t;q) and the projections pN (Og)T may

be computed at level 1 (once for any given N) and stored.

.LN lip
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CHAPTER 5. CONCLUSIONS

We have presented numerical methods for parameter identifica-

tion of several constant parameters appearing in the Euler-

Bernoulli and Timoshenko equations for transverse vibrations of

a beam. The practical utility of our approach is supported by our

computational experience on a large number of examples, a sample

of which has been included here. In most cases of interest we have

given a complete treatment of our methods including numerical

algorithms, convergence proofs, and numerical results.

The fundamental ideas upon which our convergence results are

based, involving the use of a semigroup theoretic approach for the

approximation of identification problems governed by partial dJf-

ferential equations (distributed parameter systems), first ap-

peared in [11]. These methods essentially involve writing the

initial-boundary value problem as an abstract equation

(5.1) 1(t) =_W(q)z(t) + F(q,t)

in a Hilbert space Z, where _Qc(q) is the generator of a C0

semigroup in Z, and approximating the generator -V(q) by the

operator iN (q) = PN'Q((q)PN, with PN the projection onto a

finite dimensional subspace ZN spanned by splines. The result-

ing system of ordinary differential equations

N N, N N(5.2) N(t) =-Q( (q)z (t) + F (q,t)

is used to approximate solutions of (5.1).

I~-~-~ ~t
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Instead of seeking a Z which minimizes a cost functional

J(q,z(.,q)) over mild solutions of (5.1), we obtain estimated
m -N

values for q by seeking a q which minimizes the cost func-

N Ntional J(q;z (-;q)) over solutions z (.;q) to (5.2).

The idea of estimating solutions to the identification prob-

lem is not new. The notion of approximating solutions of the

partial differential equation and performing the optimization on

the approximate solutions to obtain parameter estimates has been

used extensively. We refer the reader to the survey articles

2 1, [26], [32], and [36] to see the variety of approaches which

have been used. We only discuss some of the relevant material

here.

We note that many investigators have used finite-difference

methods, modal approximations, and the methods of lines to approxi-

mate solutions of the partial differential equation (see Table 1

in [26]) in the context of parameter identification. Galerkin

methods, to which our methods are closely related, have also been

used. In [331, Galerkin methods are used for the heat equation

employing a basis of polynomials which satisfy the boundary condi-

tions and which are orthogonalized via Gram-Schmidt.

While most of the work in the surveys deals with the estima-

tion problem for the heat equation, several authors have proposed

numerical methods for estimating a single parameter in the beam

equation

(5.3) Ytt Yxxxx"

In [19] an example is given where this is done using finite
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differences to approximate solutions to (5.3). We have found no

results in the literature for estimating structural or viscous

damping coefficients or the parameters in the Timoshenko equation.

Cubic splines have also been used in the context of estima-

tion of parameters (see surveys above). In [43] they are used

for the one-dimensional heat equation to obtain a "lumped system"

of ordinary differential equations which approximate the partial

differential equation, by collocating with cubic splines in the

spatial variable. We believe our approximations using PNc (q)pN

with cubic and quintic splines are new.

Little work has been done in proving convergence of parameter

estimation schemes, and we have found no such theoretical work in

the literature for methods comparable to ours. The literature on

parameter estimation consists mainly of proposed numerical

methods with test results for a simple example estimating a single

identification of many parameters and have provided proofs of

convergence for our methods.

While some authors have investigated the identification of

coefficients which are a function of the spatial variable (see

Table 1 in [26]), we have restricted our attention here to the

case of constant parameters. Our methods do carry over to the

case of spatially varying coefficients, and this has been done

for a special case of the convection-diffusion equation (see

[5, p. 22] for a discussion). We have not treated the questions

of observability on identificability, but have chosen to empha-

size the convergence of the parameter estimates to the solution

of the identification problem.
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In the case of deterministic data (noise free), most authors

have used a steepest descent method to perform the optimization

(see Table 1 in [26] and other surveys). It is well-known that

steepest descent can exhibit oscillatory behavior and perform

hadly in practice [17, p. 18]. For this reason, we have chosen

the more robust Levenberg-Marquardt method.

We have used a discrete least-squares fit-to-data criterion

(cost functional). Many other type of cost functionals have been

used also. In particular, cost functionals of the form

k~ T 2
(5.4) J(q,y(.,.;q)) = 1 J y(t'xi) - ni(t)I dti=l 0o

(continuous measurements in time from a finite number of sensors)

have been considered. The methods we have proposed extend di-

rectly to such functionals. In fact, ours may be considered a

digitized version of (5.4), where only a finite number of time

samples are recorded.

We have only used state observations corresponding to dis-

placements y(t ix.) to simplify the discussion. It should be

clear that we could also have used data of the form yt(ti,xi)

(velocity measurements) or data of the form y x (tixj) (from

strain gauges) as well, with only slight modifications in the

arguments and in the computer codes.

The theory that we have developed (following [11]) is the

semidiscrete approximations (5.2) (i.e., continuous in time).

This serves to decouple the analysis for the spatial approxima-

tion from the time discretization that is employed in practice.

This is somewhat necessary because we have used variable-step/
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variable order methods (Gear's package) to integrate the approxi-

mating system of ordinary differential equations to a specified

local error tolerance. While a full analysis of such a fully

discretized method would be difficult, fully discrete methods

based on Pads approximations to exp(3 N(q)t) have been analyzed

for functional differential equations [39] and this analysis is

being carried over to our methods for partial differential equa-

tions (for fixed step length At).

The semigroup theoretic approach (and in particular the

Trotter-Kato theorem) provides a simple approach to obtaining

convergence results. Other methods have been used and may be more

powerful in obtaining results in a broader class of equations.

For example, [ 8] have used a weak formulation and Gronwall-type

estimates to obtain convergence results for estimation problems

involving a class of non-autonomous equations.

We also note that in [16], methods to approximate solutions

to an elliptic equation are proposed, and an a priori estimate of

the error JqN - qi is derived. The Trotter-Kato approach does

not appear to yield such estimates in any easy fashion.

In short, we have presented a unified treatment of a class

of parameter estimation problems involving certain beam equations.

Our treatment includes new methods of approximation (based on the

classical approximations pN (q)pN), proofs of convergence of the

approximate identification problem, and numerical results.

A <, >
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